DOI QR코드

DOI QR Code

RELATIVE INTEGRAL BASES OVER A RAY CLASS FIELD

  • Published : 2006.02.01

Abstract

Let K be a number field, $K_n$ its ray class field with conductor n and L a Galois extension of K containing $K_n$. We prove that $L/K_n$ has a relative integral basis (RIB) under certain simple condition. Also we reduce the problem of the existence of a RIB to a quadratic extension of $K_n$ under some condition.

Keywords

References

  1. E. Artin, Questions de base minimale dans la theorie des nombres algebriques, Colloques Internationauz du Centre National de la Recherche Scientifique, no. 24, Centre National de la Recherche Scientifique, Paris, 1950
  2. M. Daberkow and M. Pohst, On integral bases in relative quadratic extensions, Math. Comp. 65 (1996), no. 213, 319-329 https://doi.org/10.1090/S0025-5718-96-00686-2
  3. M. Ishida, The genus fields of algebraic number fields, Lecture Notes in Mathe- matics Vol 555, Springer-Verlag, Berlin-New York, 1976
  4. E. Soverchia, Relative integral bases over a Hilbert class field, J. Number Theory 97 (2002), no. 2, 199-203 https://doi.org/10.1016/S0022-314X(02)00009-4
  5. X. Zhang and F. Xu, Existence of integral bases for relative extensions of n-cyclic number fields, J. Number Theory 60 (1996), no. 2, 409-416 https://doi.org/10.1006/jnth.1996.0131