ON THE COMMUTATIVE PRODUCT OF DISTRIBUTIONS

Brian Fisher and Kenan Taş

ABSTRACT. The commutative products of the distributions $x^r \ln^p |x|$ and $x^{-r-1} \ln^q |x|$ and of $\operatorname{sgn} x x^r \ln^p |x|$ and $\operatorname{sgn} x x^{-r-1} \ln^q |x|$ are evaluated for $r = 0, \pm 1, \pm 2, \ldots$ and $p, q = 0, 1, 2, \ldots$

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . The distributions $x_+^{-1} \ln^p x_+$ and $x_-^{-1} \ln^p x_-$ are defined by the equations

$$x_{+}^{-1} \ln^{p} x_{+} = (p+1)^{-1} (\ln^{p+1} x_{+})', \ x_{-}^{-1} \ln^{p} x_{-} = -(p+1)^{-1} (\ln^{p+1} x_{-})'$$

for $p = 0, 1, 2, \ldots$, see Gel'fand and Shilov [6].

The distributions $x_{+}^{-r} \ln^p x_{+}$ and $x_{-}^{-r} \ln^p x_{-}$ are then defined inductively by the equations

$$(x_{+}^{-r+1}\ln^{p}x_{+})' = -(r-1)x_{+}^{-r}\ln^{p}x_{+} + px_{+}^{-r}\ln^{p-1}x_{+},$$

$$(x_{-}^{-r+1}\ln^{p}x_{-})' = (r-1)x_{-}^{-r}\ln^{p}x_{-} - px_{-}^{-r}\ln^{p-1}x_{-}$$

for $r=1,2,\ldots$ and $p=0,1,2,\ldots$. Note that this is not the same as Gel'fand and Shilov's definitions.

The distribution $x^{-r} \ln^p |x|$ is then defined by

$$x^{-r} \ln^p |x| = x_+^{-r} \ln^p x_+ + (-1)^r x_-^{-r} \ln^p x_-$$

for r = 1, 2, ... and p = 0, 1, 2, ..., which is in agreement with Gel'fand and Shilov's definition. In particular, it is easily proved that if φ is a function in \mathcal{D} with support contained in the interval [-1, 1], then

(1)
$$\langle x^{-1} \ln^p |x|, \varphi(x) \rangle = \int_{-1}^1 x^{-1} \ln^p |x| [\varphi(x) - \varphi(0)] dx$$

for $p = 0, 1, 2, \dots$

Received October 19, 2004. Revised October 25, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 46F10.

Key words and phrases: distribution, delta-function, product of distributions.

Further, the distribution $\operatorname{sgn} x x^{-r} \ln^p |x|$ is defined by

$$\operatorname{sgn} x \, x^{-r} \ln^p |x| = x_+^{-r} \ln^p x_+ - (-1)^r x_-^{-r} \ln^p x_-$$

for $r = 0, \pm 1, \pm 2, \ldots$ and $p = 0, 1, 2, \ldots$

It follows that

$$(x^{-r} \ln^p |x|)' = -rx^{-r-1} \ln^p |x| + px^{-r-1} \ln^{p-1} |x|,$$

$$(\operatorname{sgn} x \, x^{-r} \ln^p |x|)' = -r \operatorname{sgn} x \, x^{-r-1} \ln^p |x| + p \operatorname{sgn} x \, x^{-r-1} \ln^{p-1} |x|$$

for
$$r = 0, \pm 1, \pm 2, \ldots$$
 and $p = 0, 1, 2, \ldots$

The definition of the product of a distribution and an infinitely differentiable function is the following, see for example Gel'fand and Shilov [6] or Schwartz [7].

DEFINITION 1. Let f be a distribution in \mathcal{D}' and let g be an infinitely differentiable function. The product fg is defined by

$$\langle fg, \varphi \rangle = \langle f, g\varphi \rangle$$

for all functions φ in \mathcal{D} .

Schwartz claimed that no suitable generalization of this definition could be defined but Gel'fand and Shilov pointed out that it was possible to define the product of a distribution and a sufficiently continuously differentiable function. More precisely, a first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

DEFINITION 2. Let f and g be distributions in \mathcal{D}' for which on the interval (a,b), f is the k-th derivative of a locally summable function F in $L^p(a,b)$ and $g^{(k)}$ is a locally summable function in $L^q(a,b)$ with 1/p+1/q=1. Then the product fg=gf of f and g is defined on the interval (a,b) by

$$fg = \sum_{i=0}^{k} {k \choose i} (-1)^{i} [Fg^{(i)}]^{(k-i)}.$$

It follows easily from Definition 2 that the following products hold:

(2)
$$(|x|^{\lambda} \ln^p |x|)(|x|^{\mu} \ln^q |x|) = |x|^{\lambda+\mu} \ln^{p+q} |x|,$$

(3)
$$(\operatorname{sgn} x | x|^{\lambda} \ln^{p} |x|) (|x|^{\mu} \ln^{q} |x|) = \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{p+q} |x|,$$

(4)
$$(|x|^{\lambda} \ln^p |x|) (\operatorname{sgn} x |x|^{\mu} \ln^q |x|) = \operatorname{sgn} x |x|^{\lambda + \mu} \ln^{p+q} |x|,$$

(5)
$$(\operatorname{sgn} x |x|^{\lambda} \ln^{p} |x|) (\operatorname{sgn} x |x|^{\mu} \ln^{q} |x|) = |x|^{\lambda + \mu} \ln^{p+q} |x|$$

for
$$\lambda + \mu > -1$$
 and $p, q = 0, 1, 2, ...$

Now let $\rho(x)$ be a function in \mathcal{D} having the following properties:

- (i) $\rho(x) = 0 \text{ for } |x| \ge 1$,
- (ii) $\rho(x) \ge 0$,
- (iii) $\rho(x) = \rho(-x)$,

(iv)
$$\int_{-1}^{1} \rho(x) dx = 1$$
.

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for n = 1, 2, ... It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

The following definition for the commutative product of two distributions was given in [2] and generalizes Definition 2.

DEFINITION 3. Let f and g be distributions in \mathcal{D}' and let $f_n(x) = (f*\delta_n)(x)$ and $g_n(x) = (g*\delta_n)(x)$. We say that the commutative product f.g of f and g exists and is equal to the distribution h on the interval (a,b) if

$$\lim_{n \to \infty} \langle f_n(x)g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle$$

for all functions φ in \mathcal{D} with support contained in the interval [a, b].

A number of results on the commutative product of distributions were obtained in [2], [3], [4] and [5].

It was proved in [2] that if the product fg exists by Definition 2, it exists by Definition 3 and fg = f.g.

The following theorem is easily proved.

THEOREM 1. Let f and g be distributions in \mathcal{D}' and suppose that the commutative products f.g and f.g' (or f'.g) exists. Then the commutative product f'.g (or f.g') exists and

(6)
$$(f \cdot g)' = f' \cdot g + f \cdot g'.$$

In [1], Colombeau gave a more general definition for the product of distributions. He considered quotients of the space $\mathcal{E}(\mathcal{D}(\Omega))$ of all infinitely differentiable functions on the space $\mathcal{D}(\Omega)$, where Ω denotes any open subset of the reals. An algebra $\mathcal{G}(\Omega)$ is then defined which contains the space $\mathcal{D}'(\Omega)$ of all distributions on Ω and such that the

algebra $\mathcal{E}(\Omega)$ of all infinitely differentiable functions on Ω is a subalgebra of $\mathcal{G}(\Omega)$. The resulting product of two distributions in $\mathcal{D}(\Omega)$ is then an element in $\mathcal{G}(\Omega)$. This definition has the disadvantage that the product of two distributions in $\mathcal{D}(\Omega)$ is not necessarily a distribution in $\mathcal{D}(\Omega)$.

From now on, we use Definition 3 for the product of distributions and prove the following commutative extension of equation (2).

Theorem 2. The commutative product $(x^r \ln^p |x|).(x^{-r-1} \ln^q |x|)$ exists and

(7)
$$(x^r \ln^p |x|).(x^{-r-1} \ln^q |x|) = x^{-1} \ln^{p+q} |x|$$
 for $r = 0, \pm 1, \pm 2, \dots$ and $p, q = 0, 1, 2, \dots$

Proof. We first of all prove equation (7) when r = 0. Putting

$$(\ln^p |x|)_n = \ln^p |x| * \delta_n(x) = \int_{-1/n}^{1/n} \ln^p |x - t| \delta_n(t) dt,$$

$$(x^{-1}\ln^q|x|)_n = (x^{-1}\ln^q|x|) * \delta_n(x) = (q+1)^{-1} \int_{-1/n}^{1/n} \ln^{q+1}|x-t|\delta_n'(t) dt,$$

we have

(8)
$$\int_{-1}^{1} (\ln^p |x|)_n (x^{-1} \ln^q |x|)_n dx = 0$$

since the integrand is odd.

Next, if ψ is an arbitrary continuous function, we have

$$\int_{-1}^{1} x(\ln^{p}|x|)_{n}(x^{-1}\ln^{q}|x|)_{n}\psi(x) dx$$

$$= (q+1)^{-1} \int_{-1/n}^{1/n} \int_{-1/n}^{1/n} \int_{-1/n}^{1/n} x \ln^{p}|x - s|\delta_{n}(s)$$

$$\times \ln^{q+1}|x - t|\delta'_{n}(t)\psi(x) ds dt dx$$

$$+ \int_{1/n}^{1} x(\ln^{p}|x|)_{n}(x^{-1}\ln^{q}|x|)_{n}\psi(x) dx$$

$$+ \int_{-1}^{-1/n} x(\ln^{p}|x|)_{n}(x^{-1}\ln^{q}|x|)_{n}\psi(x) dx$$

$$=: I_{1} + I_{2} + I_{3}.$$

Making the substitutions ns = u, nt = v and nx = w, we have

$$I_1 = (q+1)^{-1} n^{-1} \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 w \ln^p |(w-u)/n| \rho(u)$$
$$\times \ln^{q+1} |(w-v)/n| \rho'(v) \psi(w/n) \, du \, dv \, dw$$

and it follows immediately that

$$\lim_{n \to \infty} I_1 = 0.$$

To deal with I_2 and I_3 , we note that when x > 1/n

$$(\ln^{p}|x|)_{n} = \int_{-1/n}^{1/n} \ln^{p}|x - s| \delta_{n}(s) ds$$

$$= \int_{-1}^{1} \ln^{p}|x - u/n| \rho(u) du$$

$$= \int_{-1}^{1} \left[\ln|x| - \sum_{i=1}^{\infty} \frac{u^{i}}{in^{i}x^{i}} \right]^{p} \rho(u) du$$

$$= \ln^{p}|x| \int_{-1}^{1} \rho(u) du + O(n^{-1})$$

$$= \ln^{p}|x| + O(n^{-1})$$

and

$$(q+1)(x^{-1}\ln^{q}|x|)_{n}$$

$$= \int_{-1/n}^{1/n} \ln^{q+1}|x-t|\delta'_{n}(t) dt$$

$$= n \int_{-1}^{1} \ln^{q+1}|x-v/n|\rho'(v) dv$$

$$= n \int_{-1}^{1} \left[\ln|x| - \sum_{i=1}^{\infty} \frac{v^{i}}{in^{i}x^{i}}\right]^{q+1} \rho'(v) dv$$

$$= n \ln^{q+1}|x| \int_{-1}^{1} \rho'(v) dv$$

$$- n(q+1) \ln^{q}|x| \sum_{i=1}^{\infty} \int_{-1}^{1} \frac{v^{i}}{in^{i}x^{i}} \rho'(v) dv + O(n^{-1})$$

$$= \frac{(q+1) \ln^{q}|x|}{x} + O(n^{-1}).$$

Choosing η with $1/n < \eta < 1$ and using equations (11) and (12), we have

$$\left| \int_{1/n}^{\eta} x(\ln^{p}|x|)_{n}(x^{-1}\ln^{q}|x|)_{n}\psi(x) dx \right|$$

$$\leq \int_{1/n}^{\eta} |x(\ln^{p}|x|)_{n}(x^{-1}\ln^{q}|x|)_{n}\psi(x)| dx$$

$$\leq K \int_{1/n}^{\eta} |\ln^{p+q}x| dx + O(n^{-1})\eta$$

$$\leq K \sum_{k=0}^{p+q} \frac{(p+q)!}{(p+q-k)!} [\eta |\ln^{p+q-k}\eta| + n^{-1}\ln^{p+q-k}n] + O(n^{-1})\eta$$

$$= O(\eta |\ln^{p+q}\eta|) + O(n^{-1}\ln^{p+q}n) + O(n^{-1})\eta,$$

where $K = \max\{\psi(x) : x \in [-1, 1]\}$. It follows that

(13)
$$\lim_{n \to \infty} \left| \int_{1/n}^{\eta} x(\ln^p |x|)_n (x^{-1} \ln^q |x|)_n \psi(x) \, dx \right| = O(\eta |\ln^{p+q} \eta|).$$

Similarly,

(14)
$$\lim_{n \to \infty} \left| \int_{-n}^{-1/n} x(\ln^p |x|)_n (x^{-1} \ln^q |x|)_n \psi(x) \, dx \right| = O(\eta |\ln^{p+q} \eta|).$$

Now let φ be an arbitrary function in \mathcal{D} with support contained in the interval [-1,1]. By the mean value theorem

$$\varphi(x) = \varphi(0) + x\varphi'(\xi x),$$

where $0 < \xi < 1$. Thus

$$\langle (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n}, \varphi(x) \rangle$$

$$= \int_{-1}^{1} (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n}\varphi(x) dx$$

$$= \varphi(0) \int_{-1}^{1} (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n} dx$$

$$+ \int_{-1/n}^{1/n} x (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n}\varphi'(\xi x) dx$$

$$+ \int_{1/n}^{\eta} x (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n}\varphi'(\xi x) dx$$

$$+ \int_{\eta}^{1} x (\ln^{p} |x|)_{n}(x^{-1} \ln^{q} |x|)_{n}\varphi'(\xi x) dx$$

$$+ \int_{-\eta}^{-1/n} x(\ln^p |x|)_n (x^{-1} \ln^q |x|)_n \varphi'(\xi x) dx + \int_{-1}^{-\eta} x(\ln^p |x|)_n (x^{-1} \ln^q |x|)_n \varphi'(\xi x) dx.$$

Using the equations (8), (9), (10), (13) and (14) and noting that the sequence $\{(x^{-1} \ln^q |x|)_n\}$ converges uniformly to the function $x^{-1} \ln^q |x|$ on the intervals $[\eta, 1]$ and $[-1, -\eta]$, it follows that

$$\lim_{n \to \infty} \langle (\ln^p |x|)_n (x^{-1} \ln^q |x|)_n, \varphi(x) \rangle = O(\eta |\ln^{p+q} \eta|)$$

$$+ \int_{\eta}^1 \ln^{p+q} |x| \varphi'(\xi x) dx$$

$$+ \int_{-1}^{-\eta} \ln^{p+q} |x| \varphi'(\xi x) dx.$$

However, since η can be made arbitrarily small, it follows that

$$\lim_{n \to \infty} \langle (\ln^p |x|)_n (x^{-1} \ln^q |x|)_n, \varphi(x) \rangle$$

$$= \int_{-1}^1 \ln^{p+q} |x| \varphi'(\xi x) dx$$

$$= \int_{-1}^1 x^{-1} \ln^{p+q} |x| [\varphi(x) - \varphi(0)] dx$$

$$= \langle x^{-1} \ln^{p+q} |x|, \varphi(x) \rangle$$

on using equation (1). This proves equation (7) on the interval [-1,1] for r=0 and p,q=0,1,2,... but equation (7) clearly holds on any closed interval not containing the origin.

It now follows as in the proof of Theorem 2 that equation (7) holds for $r, p, q = 0, 1, 2, \ldots$ However, since we are now dealing with a commutative product, equation (7) must also hold for $r = -1, -2, \ldots$ and $p, q = 0, 1, 2, \ldots$ This completes the proof of the theorem.

The product $(\operatorname{sgn} x x^r \ln^p |x|)(\operatorname{sgn} x x^s \ln^q |x|)$ also exists by Definition 2 and

(15)
$$(\operatorname{sgn} x \, x^r \ln^p |x|) (\operatorname{sgn} x \, x^s \ln^q |x|) = x^{r+s} \ln^{p+q} |x|$$

for $r + s, p, q = 0, 1, 2, \dots$

We now prove the following extension of equation (15).

THEOREM 3. The commutative product

$$(\operatorname{sgn} x \, x^r \ln^p |x|).(\operatorname{sgn} x \, x^{-r-1} \ln^q |x|)$$

exists and

(16)
$$(\operatorname{sgn} x \, x^r \ln^p |x|) \cdot (\operatorname{sgn} x \, x^{-r-1} \ln^q |x|) = x^{-1} \ln^{p+q} |x|$$

for $r = 0, \pm 1, \pm 2, \dots$ and $p, q = 0, 1, 2, \dots$

$$(\ln^{p} x_{+})_{n}$$

$$= \ln^{p} x_{+} * \delta_{n}(x)$$

$$= \begin{cases} \int_{-1/n}^{1/n} \ln^{p}(x-s)\delta_{n}(s) ds, & x \geq 1/n, \\ \int_{-1/n}^{x} \ln^{q+1}(x-s)\delta_{n}(s) ds, & -1/n < x < 1/n, \\ 0, & x \leq -1/n, \end{cases}$$

$$(\ln^{p} x_{-})_{n}$$

$$= \ln^{p} x_{-} * \delta_{n}(x)$$

$$= \begin{cases} \int_{1/n}^{-1/n} \ln^{p}(s-x)\delta_{n}(s) ds, & x \leq -1/n, \\ \int_{x}^{1/n} \ln^{p}(s-x)\delta_{n}(s) ds, & x \leq -1/n, \\ 0, & x \geq 1/n, \end{cases}$$

$$(x_{+}^{-1} \ln^{q} x_{+})_{n}$$

$$= (x_{+}^{-1} \ln^{q} x_{+}) * \delta_{n}(x)$$

$$= \begin{cases} (q+1)^{-1} \int_{-1/n}^{1/n} \ln^{q+1}(x-t)\delta'_{n}(t) dt, & x \geq 1/n, \\ (q+1)^{-1} \int_{-1/n}^{x} \ln^{q+1}(x-t)\delta'_{n}(t) dt, & x \leq -1/n, \\ 0, & x \leq -1/n, \end{cases}$$

$$= (x_{-}^{-1} \ln^{q} x_{-})_{n}$$

$$= (x_{-}^{-1} \ln^{q} x_{-}) * \delta_{n}(x)$$

$$= \begin{cases} (q+1)^{-1} \int_{-1/n}^{1/n} \ln^{q+1}(t-x)\delta'_{n}(t) dt, & x \leq -1/n, \\ (q+1)^{-1} \int_{x}^{1/n} \ln^{q+1}(t-x)\delta'_{n}(t) dt, & x \leq -1/n, \\ 0, & x \geq 1/n. \end{cases}$$

so that the support of

$$(\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n$$

is contained in the interval [-1/n, 1/n]. We then have

(17)
$$\int_{-1/n}^{1/n} \left[(\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n \right] dx = 0$$

since the integrand is odd.

Next, if ψ is an arbitrary continuous function, we have

$$\int_{-1/n}^{1/n} x(\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n \psi(x) dx$$

$$= (q+1)^{-1} \int_{-1/n}^{1/n} \int_{-1/n}^x \int_x^{1/n} x \ln^p (s-x) \delta_n(s)$$

$$\times \ln^{q+1} (x-t) \delta'_n(t) \psi(x) ds dt dx$$

$$= (q+1)^{-1} n^{-1} \int_{-1}^1 \int_{-1}^w \int_u^1 w \ln^p |(u-w)/n| \rho(u)$$

$$\times \ln^{q+1} |(w-v)/n| \rho'(v) \psi(w/n) du dv dw$$

on making the substitutions ns = u, nt = v and nx = w. It follows immediately that

(18)
$$\lim_{n \to \infty} \int_{-1/n}^{1/n} x (\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n \psi(x) \, dx = 0.$$

Similarly,

(19)
$$\lim_{n \to \infty} \int_{-1/n}^{1/n} x (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n \psi(x) \, dx = 0.$$

Now let φ is an arbitrary function in \mathcal{D} , we have

$$\langle (\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n, \varphi(x)$$

$$= \varphi(0) \int_{-1/n}^{1/n} [(\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n] \varphi(x) dx$$

$$+ \int_{-1/n}^{1/n} [(\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n] \varphi'(\xi x) dx$$

and it follows from equations (17), (18) and (19) that

(20)
$$\lim_{n \to \infty} \langle (\ln^p x_-)_n (x_+^{-1} \ln^q x_+)_n - (\ln^p x_+)_n (x_-^{-1} \ln^q x_-)_n, \varphi(x) \rangle = 0.$$

Putting

$$(\operatorname{sgn} x \ln^p |x|)_n = (\operatorname{sgn} x \ln^p |x|) * \delta_n(x) = (\ln_+^p x)_n - (\ln_-^p x_-)_n,$$

$$(\operatorname{sgn} x x^{-1} \ln^q |x|)_n = (\operatorname{sgn} x x^{-1} \ln^q |x|) * \delta_n(x)$$

$$= (x_+^{-1} \ln_+^q x)_n - (x_-^{-1} \ln_-^q x_-)_n,$$

we have

$$(\operatorname{sgn} x \ln^p |x|)_n (\operatorname{sgn} x x^{-1} \ln^q |x|)_n - (\ln^p |x|)_n (x^{-1} \ln^q |x|)_n$$

$$= [(\ln^p x_+)_n - (\ln^p x_-)_n][(x_+^{-1} \ln^q x_+)_n + (x_-^{-1} \ln^q x_-)_n]$$

$$- [(\ln^p x_+)_n + (\ln^p x_-)_n][(x_+^{-1} \ln^q x_+)_n - (x_-^{-1} \ln^q x_-)_n].$$

Multiplying out and using equation (20) it follows that

$$\lim_{n \to \infty} \langle (\operatorname{sgn} x \ln^p |x|)_n (\operatorname{sgn} x x^{-1} \ln^q |x|)_n - (\ln^p |x|)_n (x^{-1} \ln^q |x|)_n, \varphi(x) \rangle = 0.$$

Using equation (7), we have proved equation (16) for the case r = 0 and $p, q = 0, 1, 2, \ldots$ The general case follows by induction as in the proof of equation (7).

References

- [1] J. -F. Colombeau, New generalized functions and multiplication of distributions, North-Holland Publishing Co., 1984, xii+375.
- [2] B. Fisher, The product of distributions, Quart. J. Math. Oxford Ser. 22 (1971), no. 2, 291-298.
- [3] _____, The product of the distributions $x_+^{-r-\frac{1}{2}}$ and $x_-^{-r-\frac{1}{2}}$, Proc. Cambridge Philos. Soc. 71 (1971), 123–130.
- [4] _____, The product of the distributions x^{-r} and $\delta^{(r-1)}(x)$, Proc. Cambridge Philos. Soc. **72** (1972), 201–204.
- [5] ______, Some results on the product of distributions, Proc. Cambridge Philos. Soc. 73 (1973), 317–325.
- [6] I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.
- [7] L. Schwartz, Théorie des Distributions, Tome I, Actualités Sci. Ind., no. 1091, Hermann & Cie., Paris 1950, 148.

Brian Fisher
Department of Mathematics
University of Leicester
Leicester, LE1 7RH, England
E-mail: fbr@le.ac.uk

Kenan Taş Department of Mathematics and Computer Science Faculty of Arts and Sciences Cankaya University Ankara, Turkey

E-mail: kenan@cankaya.edu.tr