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ON THE COMMUTATIVE
PRODUCT OF DISTRIBUTIONS

BRIAN FiSHER AND KENAN TAg

ABSTRACT. The commutative products of the distributions z”
In? |z| and 27"~ In? || and of sgnzx =" In? |z| and sgnz x~ " ! In? |z|
are evaluated for r = 0,+1,%2,... and p,¢=0,1,2,....

In the following, we let D be the space of infinitely differentiable
functions with compact support and let D’ be the space of distributions
defined on D. The distributions m;l InP 2z, and z_!InP2_ are defined
by the equations
et nPry = (p+ 1) (P zy), 27 InPr_ = —(p+ 1) H(InPH )

for p=0,1,2,..., see Gel’fand and Shilov [6].
The distributions z7" In?z, and x”"In® 2_ are then defined induc-
tively by the equations

(@ Pey) = — (r—1Dei WP ay +pal P oy,
@I ) = (r— e WPz — paZ P o

forr=1,2,...and p = 0,1,2,.... Note that this is not the same as
Gel’'fand and Shilov’s definitions.
The distribution ™" n? |x| is then defined by

e InP |z) =2 InPzy + (1) 27" InP z_

forr=1,2,...and p =0,1,2,..., which is in agreement with Gel'fand
and Shilov’s definition. In particular, it is easily proved that if ¢ is a
function in D with support contained in the interval [—1, 1], then

1
(1) @ P (2], p(2)) = [ &P |z|fp(e) - ¢(0)] dz
-1

forp=0,1,2,....
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Further, the distribution sgnz 27" In? |z| is defined by
sgnzz " InP |z| = 27" WP 2y — (—1)"z " InPx_
forr=0,+1,%£2,...and p=10,1,2,....
It follows that
(z7"In? |z|) = — re” " nP |z +pz " P! |z,
(sgnzz " InP|z|) = — rsgnzz " In® |z| + psgnz ™" InP ||

forr=0,+1,£2,...and p=10,1,2,....

The definition of the product of a distribution and an infinitely differ-
entiable function is the following, see for example Gel’fand and Shilov [6]
or Schwartz [7].

DEFINITION 1. Let f be a distribution in D’ and let g be an infinitely
differentiable function. The product fg is defined by

(f9,0) = (f,99)

for all functions ¢ in D.

Schwartz claimed that no suitable generalization of this definition
could be defined but Gel’fand and Shilov pointed out that it was possible
to define the product.- of a distribution and a sufficiently continuously
differentiable function. More precisely, a first extension of the product
of a distribution and an infinitely differentiable function is the following,
see for example [2].

DEFINITION 2. Let f and g be distributions in D’ for which on the
interval (a,b), f is the k-th derivative of a locally summable function
F in LP(a,b) and g*) is a locally summable function in L9(a,b) with
1/p+1/q = 1. Then the product fg = gf of f and g is defined on the
interval (a,b) by

k

fo=32 () ompe
It follows easily from Definition 2 that the following products hold:
(2) (|| 0? |z[)(|z|# In? |2]) = || 0P+ |z,
(3) (sgna|z|* P |z])(|z|* In? |2]) = sgnz|z[ T 0P |z,
(4) (|z]* In? |z]) (sgn z|z|* In? [2]) = sgnz|z|*H InP*+ ||,
(5)  (sgnz|z* In? |a|)(sgnzle* In |z|) = |z|*** 0P+ ||

for \+pu>-1and p,g=0,1,2,....
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Now let p(x) be a function in D having the following properties:
(i) p(x) = 0 for |z| > 1,
(ii) p(z) 2 0,
(iii) p(z) = p(—2),
1
(iv) / p(z)dz = 1.
-1
Putting d,(z) = np(nz) for n = 1,2,..., it follows that {d,(z)} is a
regular sequence of infinitely differentiable functions converging to the
Dirac delta-function §(z).
If now f is an arbitrary distribution in D', we define

fa() = (f % 6n)(2) = (f(),6n(z — 1))
forn =1,2,.... It follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(z).

The following definition for the commutative product of two distri-
butions was given in [2] and generalizes Definition 2.

DEFINITION 3. Let f and g be distributions in D’ and let f,(z) =
(f*6n)(z) and gn(z) = (g%6,)(z). We say that the commutative product
f.g of f and g exists and is equal to the distribution A on the interval
(a,b) if

Jim (fn(2)gn(2), p(z)) = (h(z), p(z))

for all functions ¢ in D with support contained in the interval [a, b].

A number of results on the commutative product of distributions were
obtained in {2], (3], [4] and [5].

It was proved in [2] that if the product fg exists by Definition 2, it
exists by Definition 3 and fg = f.g.

The following theorem is easily proved.

THEOREM 1. Let f and g be distributions in D' and suppose that
the commutative products f.g and f.¢’ (or f’.g) exists. Then the com-
mutative product f'.g (or f.g') exists and

(6) (f9)=fg9+f4d.

In [1], Colombeau gave a more general definition for the product
of distributions. He considered quotients of the space £(D(£2)) of all
infinitely differentiable functions on the space D(Q2), where Q denotes
any open subset of the reals. An algebra G(2) is then defined which
contains the space D'(€2) of all distributions on Q and such that the
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algebra £(2) of all infinitely differentiable functions on €2 is a subalgebra
of G(2). The resulting product of two distributions in D() is then an
element in G(2). This definition has the disadvantage that the product
of two distributions in D(Q) is not necessarily a distribution in D(Q).

From now on, we use Definition 3 for the product of distributions and
prove the following commutative extension of equation (2).

THEOREM 2. The commutative product (z”In? |z|).(z7"~!In? |z])
exists and

(7) (z" 0? |z[).(z7" 1 In? [z]) = 2~ InPT? ]
forr=0,%1,4+2,... and p,q=0,1,2,....

Proof. We first of all prove equation (7) when r = 0. Putting

1/n
(In? |z|)n, = InP |z| % 6, () = / In? |z — t]6,(¢) dt,

~1/n
1/n
(e In? [z|)n = (z 71 In? |2|) %6 (z) = (g+1) ¢ / In9tL |z — 4|8, (¢) dt,
-1/n
we have
1
(®) / (In? (z[)n (27" In? |z|)n dz = 0
-1

since the integrand is odd.
Next, if 14 is an arbitrary continuous function, we have

1
/ 2(InP |z|)n(z ™ In? |z))pip(z) dz

-1
1/n rl/n rl/n

=(¢g+ 17! / z1n? |z — 5|6 (s)
-1/nJ-1/nJ-1/n

© x In9tY |z — t)6! (t)h(x) ds dt dx
1

[ o oo™ o)
. -1/n
b [ o bt 0 et o)

=+ I+ Is.
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Making the substitutions ns = u, nt = v and nx = w, we have

h=@+yon [ [ / wln? |(w — u)/nlp(u)
x In?™ |(w — v)/n|p’ (v (w/n) du dv dw
and it follows immediately that

(10) lim I; = 0.

n—oo

To deal with I and I3, we note that when z > 1/n

1/n
(In? |z|), = / In? |z — s|0n(s) ds

-1/n

1
=/ In? |z — u/n|p(u) du
-1

1 ©  iap
(11) = / [ln[ac| Zml:ﬂ] p(u) du
=lnp|x|/ ) du + O(n~Y)
= In® |z|+ O(n™1)
and

(g+1) (= I fz])n

1/n
= / In?+! |z — t|67 () dt

-1/n

1
= n/ %t |z — v/ (v) dv

-1

%

1 © /
(12) = n/_l [lnlx| - ; miwi]qﬂp (v) dv

1
= nlndt? |:c|/ o' (v)dv

—n(g+1)In? |x]2/ pcprl (v) dv + O(n™1)

_ @i%lﬂ‘f_l +0(n Y.

275
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Choosing n with 1/n < 1 < 1 and using equations (11) and (12), we
have

1/ " (1 [el)n(e 0 2]t () do
1/n
n

Pz m—l n? |z nP\ZT)|ax

< /l/nman [2)n(z ™1 In? [2])ntb(z)| d

n
< K/ 107+ 3| dz + O(n )
1/n

p+q
KZ (p (p+9)! ey [P R p| 4 0=t InPH k) 4 O(n Yy

= O(nl lnp"'qnl) +0(n ™ P n) + O(n~ 1)y,
where K = max{y(z) : z € [~1,1]}. It follows that

(13) lim ‘/1;’ z(In? |2))p (21 In? |2])pep () dm‘ = O(n|Inf*9n)).

n—oo

Similarly,

-1/n
(14)  1im| / 2(10? [ol (™ 10 2] () | = O] 1 ).
n—ool [_,

Now let ¢ be an arbitrary function in D with support contained in the
interval [—1, 1]. By the mean value theorem

p(z) = ¢(0) + z¢'(¢2),
where 0 < ¢ < 1. Thus

(0P |2])n (& In |2])n, ()
1
- L (92 fa)na™ 10 o] () d
1
= n* |z|), “1n? |z n AT
= 9(0) [ (0 fa)u(o™ 10 o)
1/n
+/ z(In? |z))p (271 17 [z)n e (Ex) da
+ /Jn z(InP ]x])n(z_l In? |z|)n¢ (£2) dx
1

+ / 210 |2 ) (z™ 10 [2])ngf (€2) de
Ui
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~1/n
+/ 1 z(ln? |x|)n(m_llnq [z|)n (£x) dz

_:,n
+/ z(In? |2)), (™ In? |2)) e (Ex) dzz.
—1

Using the equations (8), (9), (10), (13) and (14) and noting that the
sequence {(z~!In?|x|),} converges uniformly to the function =1 In? |z
on the intervals [, 1] and [~1, —7), it follows that

lim (10 |2} (27" In? &|)n, () = O(y| 1P 7))
g
+ | WnPT|z| (€x) d
/n nP T |zly (¢z) dz

+ /—n InP*? x|’ (£2) dx.

-1
However, since 77 can be made arbitrarily small, it follows that

Tim (10 [z} (o™ 10 |2]), ()

1
= [ Wil er) do

-1

1
- / 2~ P |z [p(z) — (0)] do

-1
= (¢” ' In"* |z), (x))

on using equation (1). This proves equation (7) on the interval [—1,1]
for r = 0 and p,q¢ = 0,1,2,... but equation (7) clearly holds on any
closed interval not containing the origin.

It now follows as in the proof of Theorem 2 that equation (7) holds

for r,p,q = 0,1,2,.... However, since we are now dealing with a com-
mutative product, equation (7) must also hold for » = —1,-2,... and
p,g=0,1,2,.... This completes the proof of the theorem. O

The product (sgnz " In? |z|)(sgn x 2° In? |z|) also exists by Definition
2 and

(15) (sgnz z” In |z])(sgnz z° In? |z|) = 2”5 InP 19 ||

forr+s,p,q=0,1,2,....
We now prove the following extension of equation (15).

THEOREM 3. The commutative product

(sgnz " In? |z|).(sgnz ™" L In? |z|)
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exists and
(16) (sgnzz"1nP |z|).(sgnzz™" ' In? |z|) = 27! InP+ |z
forr=0,41,+2,... and p,q=0,1,2,....

Proof. We put

(In” Z4)n
= InP x4 * 6,(x)
JH0 P ( — 5)6a(s) ds, x> 1/n,
= S0 (@~ 8)dn(s)ds, —1/n<z<1/n,
0, < —1/n,
(InP z_),

= InPz_ * 6,(x)

fl;i/n InP(s — z),(s)ds,  z<—1/n,

- fxl/n In(s — z)0n(s)ds, —1/n<z<1/n,
07 T Z l/n,

(mll In? z-l—)n

(7' In%zy) % 0, ()

(¢ + 1)*1 f1/7 It (z — t)8! (t) dt, x >1/n,
=9 (g+1)J* 1/n I+ (z — )8! (t)dt, —1/n <z <1/n,
0, z < —1/n,

(z7 %z ),
= (z-'In%z_) * 6,(x)
(g+1)7! f_I{T/‘n In?t(t — 2)8)(t) dt, z < —1/n,

=\ (g+ 17 [Pttt —2)8 (¢ dt, —1/n<z<1/n,
Oa r Z 1/na

so that the support of
(In? 2_)n (2! In?24), — (0P Tt )n(z In?z_),
is contained in the interval [—1/n,1/n|. We then have
1/n
(17) /_1/n[(ln” z_)p(zy  n? 2y )y — (0P i )n(z n?z_),] dz =0

since the integrand is odd.
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Next, if ¢ is an arbitrary continuous function, we have

1/n
/ (P z_ ), (x7! In? 24),1(z) do

—1/n

1/n  px 1/n
(g+ 1)~ / / / z1nP(s — z)6p(s)
1/nd-1/nJx

x InT(z — )8! ()i (x) ds dt dz

= (g+1)'n / / /wln”lu—w)/nlp()

x 9t |(w — v) /nlp’ (v)(w/n) du dv dw

on making the substitutions ns = u, nt = v and nx = w. It follows
immediately that

1/n
(18) lim z(In? z_)p (27! In? 24 )y () dx = 0.
Similarly,

1/n
(19) lim z(Inf 24 ) (z7  In? 2_)p9p(z) da = 0.

n—o0 J 1/n
Now let ¢ is an arbitrary function in D, we have

((In? z_ )n(w_T_l %24 ) — (0P 24 )n(z2 I 2 ), ()

1/n
©(0) / (0P z_)p (23! In9 24 )y — (I0P 24 )y (220 In% 2 )]0 () dae
1/n

/n
+ /_11/ [(In? m_)n(.’l:l %z, ), — (In? IIH-)n(l':l In? x__)n](p,(fx) dz

and it follows from equations (17), (18) and (19) that

(20) lim ((In? a:_)n(xll %z ), — (0P 2y )n(z= 0% 2 )y, () = 0.

Putting
(sgnz 1P |z|), = (sgna In? |z]) * 6p(2z) = (I0f ) — (In2 z_),,
(sgnzz™ In? (z]), = (sgnz ™! In?|z|) * 6, ()

= (z7'In% z), — (221 In? 2 ),
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we have
(sgnz In? |:c|)n(sgn:c:v'1 In?|z|), — (In? ]:c()n(ac—l In? |z|)n
= (107 24)n — (5 o) (05 10 24 ) + (27 In )]

— [(InPz4)p + (In? :I:_)n][(al::_1 In?zy )y — (22 Infz_),).
Multiplying out and using equation (20) it follows that

nlim {(sgnz 0P |z|)n(sgnz 2™ In? |z|)p
— (0 [z])n(z ™" In? 2]}, (2)) = 0.

Using equation (7), we have proved equation (16) for the case 7 = 0 and
p,g = 0,1,2,.... The general case follows by induction as in the proof
of equation (7). O
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