DOI QR코드

DOI QR Code

혼합 개선을 위한 Y-채널 마이크로 믹서의 최적설계

Optimum Design of a Y-channel Microcmixer for Enhanced Mixing

  • 신용수 (한양대학교 대학원 기계공학과) ;
  • 최형일 (서울대학교 정밀기계설계공동연구소) ;
  • 이동호 (서울대학교 기계항공공학부) ;
  • 이도형 (한양대학교 기계정보공학부)
  • 발행 : 2006.03.01

초록

Effective mixing plays a crucial role in microfluidics for biochemical applications. Owing to the small device scale and its entailing the low Reynolds number, the mixing in microchannels proceeds very slowly. In this work, we optimize the configuration of obstacles in the Y-channel mixer in order to attain maximum mixing efficiency. Before the optimum design, mixing characteristics are investigated using unstructured grid CFD method. Then, the analysis method is employed to construct the approximate analysis model to be used in the optimization procedure. The main optimization tool in the present work is sequential quadratic programming method. Using this approximate optimization procedure, we may obtain the optimum layout of obstacles in the Y-channel mixer in an efficient manner, which gives the maximum mixing efficiency.

키워드

참고문헌

  1. Stroock, A. D., Dertinger, S. K. W, Ajdari, A., Mezic, I., Stone, H. A. and Whitesides, G. M., 2002, 'Chaotic Mixer for Microchannels,' Science, Vol. 295, pp. 647-651 https://doi.org/10.1126/science.1066238
  2. Nguyen, N. T. and Wereley, S. T., 2002, Fundamentals and Applications of Microfluidics, Artech House, Boston, pp. 386-401
  3. Yang, Z., Goto, H., Matsumoto, M. and Maeda, R., 2000, 'Active Micromixer for Microfluidic Systems Using Lead-Zirconate-Titanate (PZT)-Generated Ultrasonic Vibration,' Electrophoresis, Vol. 21, Issue 1, pp. 116-119 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y
  4. Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., 1998, 'Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds,' Phys. Rev. Lett. , Vol. 80, No. 17, pp. 3863-3866 https://doi.org/10.1103/PhysRevLett.80.3863
  5. Jacobson, S. C., Mcknight, T. E. and Ramsey, J. M., 1999, 'Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,' Anal. Chem., Vol. 71, pp. 4455-4459 https://doi.org/10.1021/ac990576aS0003-2700(99)00576-4
  6. Wolfgang, E., Volker, H. and Holger, L., 2000, 'Microreactors,' Wiley, New York, pp. 41-85
  7. Schwesinger, N., Frank, T. and Wurmus, H., 1996, 'A Modular Microfluid System with an Integrated Micromixer,' J. Micrornech. Microeng., Vol. 6, pp. 99-102 https://doi.org/10.1088/0960-1317/6/1/023
  8. Koch, M., Chatelain, D., Evans, A. G. R. and Brunnschweiler, A., 1998, 'Two Simple Micromixers Based on Silicon,' J. Micrornech. Microeng., Vol. 8, pp. 123-126 https://doi.org/10.1088/0960-1317/8/2/020
  9. Koch, M., Witt, H., Evans, A. G. R. and ?Brunnschweiler, A., 1999, 'Improved Characterization Technique for Micromixers,' J. Micromech. Microeng., Vol. 9, pp. 156-158 https://doi.org/10.1088/0960-1317/9/2/312
  10. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., Aref, H. and Beebe, D. J., 2000, 'Passive Mixing in a Three-Dimensional Serpentine Microchannel,' J. Microelectromech. Syst., Vol. 9, pp. 190-197 https://doi.org/10.1109/84.846699
  11. He, B., Burke, B. J., Zhang, X., Zhang, R. and Regnier, F. E., 2001, 'A picoliter-Volume Mixer for Microfluidic Analytical Systems,' Anal. Chern., Vol. 73, pp. 1942-1947 https://doi.org/10.1021/ac000850x
  12. Wang, H., Iovenitti, P., Harvey, E. and Masood, S., 2002, 'Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,' Smart Materials and Structures, Vol. 11, pp. 662-667 https://doi.org/10.1088/0964-1726/11/5/306
  13. Choi, H. I., Kim, J. M., Choi, D. H. and Maeng, J. S., 2003, 'Optimum Design of a Viscous-driven Micropump with Single Rotating Cylinder for Maximizing Efficiency,' Trans. of the KSME(A), Vol. 27, No. 11, pp. 1889-1896 https://doi.org/10.3795/KSME-A.2003.27.11.1889
  14. Cichocki, A. and Unbehanen, R., 1993, 'Neural Networks for Optimization,' Wiley, New York, pp. 359-408
  15. Nocedal, J. and Wright, S. J., 1999, 'Numerical Optimization,' Springer, New York, pp. 528-573
  16. Dernirdzic, I. and Muzaferija, S., 1995, 'Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress of Arbitrary Topology,' Comput. Methods appl. Mech. Engrg., Vol. 125, pp. 235-255 https://doi.org/10.1016/0045-7825(95)00800-G
  17. Jessee, J. P. and Fiveland, W. A., 1996, 'A Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-orthogonal Grids,' Int. J. Numer. Meth. Fluids, Vol.23, pp. 1-21 https://doi.org/10.1002/(SICI)1097-0363(19960815)23:3<271::AID-FLD423>3.0.CO;2-C
  18. Choi, J. w., Choi, H. I., Lee, D. H. and Lee, D., 2005, 'Study on Mixing Enhancement of a Y-Channel Micromixer with Obstacles,' Trans. of the KSME(B), Vol. 29, No. 12 https://doi.org/10.3795/KSME-B.2005.29.12.1369
  19. Jeon, N. L., Dertinger, S. K. W., Chiu, D. T., Choi, I. S., Stroock, A. D. and Whitesides, G. M., 2000, 'Generation of Solution and Surface Gradients Using Microfluidic Systems,' Langmuir, Vol. 16, pp. 8311-8316 https://doi.org/10.1021/la000600b

피인용 문헌

  1. Study of a Y-Channel Micromixer with Obstacles to Enhancing Mixing vol.34, pp.9, 2010, https://doi.org/10.3795/KSME-B.2010.34.9.851