Cloning and Characterization of the Urease Gene Cluster of Streptococcus vestibularis ATCC49124

  • Published : 2006.02.01

Abstract

A genomic library of Streptococcus vestibularis ATCC49124 was constructed in an E. coli plasmid vector, and the urease-positive transformants harboring the urease gene cluster were isolated on Christensen-urea agar plates. The minimal DNA region required for urease activity was located in a 5.6 kb DNA fragment, and a DNA sequence analysis revealed the presence of a partial ureI gene and seven complete open reading frames, corresponding to ureA, B, C, E, F, G, and D, respectively. The nucleotide sequence over the entire ure gene cluster and 3'-end flanking region of S. vestibularis was up to 95% identical to that of S. salivarius, another closely related oral bacterium, and S. thermophilus, isolated from dairy products. The predicted amino acid sequences for the structural peptides were 98-100% identical to the corresponding peptides in S. salivarius and S. thermophilus, respectively, whereas those for the accessory proteins were 96-100% identical. The recombinant E. coli strain containing the S. vestibularis ure gene cluster expressed a high level of the functional urease holoenzyme when grown in a medium supplemented with 1 mM nickel chloride. The enzyme was purified over 49-fold by using DEAE-Sepharose FF, Superdex HR 200, and Mono-Q HR 5/5 column chromatography. The specific activity of the purified enzyme was 2,019 U/mg, and the Michaelis constant ($K_{m}$) of the enzyme was estimated to be 1.4 mM urea. A Superose 6HR gel filtration chromatography study demonstrated that the native molecular weight was about 196 kDa.

Keywords

References

  1. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1989. Current Protocols in Molecular Biology. J. Wiley and Sons, New York, U.S.A
  2. Bolotin, A., B. Quinquis, P. Renault, A. Sorokin, S. D. Ehrlich, S. Kulakauskas, A. Lapidus, E. Goltsman, M. Mazur, G. D. Pusch, M. Fonstein, R. Overbeek, N. Kyprides, B. Purnelle, D. Prozzi, K. Ngui, D. Masuy, F. Hancy, S. Burteau, M. Boutry, J. Delcour, A. Goffeau, and P. Hols. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22: 1554-1558 https://doi.org/10.1038/nbt1034
  3. Bosse, J. T., H. D. Gilmour, and J. I. MacInnes. 2001. Novel genes affecting urease acivity in Actinobacillus pleuropneumoniae. J. Bacteriol. 183: 1242-1247 https://doi.org/10.1128/JB.183.4.1242-1247.2001
  4. Bradshaw, D. J., A. S. McKee, and P. D. Marsh. 1989. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J. Dent. Res. 68: 1298-1302 https://doi.org/10.1177/00220345890680090101
  5. Chen, Y. Y., K. A. Clancy, and R. A. Burne. 1996. Streptococcus salivarius urease: Genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect. Immun. 64: 585-592
  6. Chen, Y. Y., C. A. Weaver, D. R. Mendelsohn, and R. A. Burne. 1998. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J. Bacteriol. 180: 5769-5775
  7. Cunliffe, N. A. and A. J. Jacob. 1997. Streptococcus vestibularis bacteraemia. J. Infect. 34: 85
  8. Helgeland, K. 1985. pH and the effect of $NH_{4}Cl$ on human gingival fibroblasts. Scand. J. Dent. Res. 93: 39-45
  9. Kleinberg, I. 1967. Effect of urea concentration on human plaque pH levels in situ. Arch. Oral Biol. 12: 1475-1484 https://doi.org/10.1016/0003-9969(67)90183-5
  10. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  11. Lee, M. H., S. B. Mulrooney, M. J. Renner, Y. Markowicz, and R. P. Hausinger. 1992. Klebsiella aerogenes urease gene cluster: Sequence of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J. Bacteriol. 174: 4324-4330 https://doi.org/10.1128/jb.174.13.4324-4330.1992
  12. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
  13. Mandel, I. D. and R. H. Thompson, Jr. 1967. The chemistry of paratid and submaxillary saliva in heavy calculus formers and non-formers. J. Periodontol. 38: 310-315 https://doi.org/10.1902/jop.1967.38.4.310
  14. Mobley, H. L. and R. P. Hausinger. 1989. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 53: 85-108
  15. Mobley, H. L., M. D. Island, and R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59: 451-480
  16. Mora, D., E. Maguin, M. Masiero, C. Parini, G. Ricci, P. L. Manachini, and D. Daffonchio. 2004. Characterization of urease genes cluster of Streptococcus thermophilus. J. Appl. Microbiol. 96: 209-219 https://doi.org/10.1046/j.1365-2672.2003.02148.x
  17. Partridge, S. M. 2000. Prosthetic valve endocarditis due to Streptococcus vestibularis. J. Infect. 41: 284-285
  18. Peterson, S., J. Woodhead, and J. Crall. 1985. Caries resistance in children with chronic renal failure: Plaque pH, salivary pH, and salivary composition. Pediatr. Res. 19: 796-799 https://doi.org/10.1203/00006450-198508000-00003
  19. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971-974 https://doi.org/10.1021/ac60252a045
  20. Whiley, R. A. and J. M. Hardie. 1988. Streptococcus vestibularis sp. nov. from the human oral cavity. Int. J. Syst. Bacteriol. 38: 335-339 https://doi.org/10.1099/00207713-38-4-335