DOI QR코드

DOI QR Code

A PCB Character Recognition System Using Rotation-Invariant Features

회전 불변 특징을 사용한 PCB 문자 인식 시스템

  • 정진회 (삼성전자(주)) ;
  • 박태형 (충북대학교 전기전자컴퓨터공학부, 컴퓨터정보통신연구소)
  • Published : 2006.03.01

Abstract

We propose a character recognition system to extract the component reference names from printed circuit boards (PCBs) automatically. The names are written in horizontal, vertical, reverse-horizontal and reverse-vertical directions. Also various symbols and figures are included in PCBs. To recognize the character and orientation effectively, we divide the recognizer into two stages: character classification stage and orientation classification stage. The character classification stage consists of two sub-recognizers and a verifier. The rotaion-invarint features of input pattern are then used to identify the character independent of orientation. Each recognizer is implemented as a neural network, and the weight values of verifier are obtained by genetic algorithm. In the orientation classification stage, the input pattern is compared with reference patterns to identify the orientation. Experimental results are presented to verify the usefulness of the proposed system.

Keywords

References

  1. 박태형, '전자조립용 CAM 시스템의 개발 동향,' 전자공학회지, 제36권, 제3호, pp. 272-280, 1999
  2. 박태형, 송종석, 김철한, 'PCB 조립장비용 장착점 추출 프로그램 개발,' 제어계측.자동화.로보틱스 연구회 합동 학술 발표회 논문집, pp. 242-247, 2000
  3. 정진회, 박태형, '이미지스캐너를 사용한 인쇄회로기판의 패드추출 방법' 한국 퍼지 및 지능시스템학회 춘계 학술대회 논문집, vol. 14, no. 1, pp. 571-575, 2004
  4. S. Kanhan, T. Pavlidis, H. S. Baird, 'On the recognition of printed characters of any font and size,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 9, no. 2, pp. 274-288, 1978 https://doi.org/10.1109/TPAMI.1987.4767901
  5. G. Baptista, K. M. Kulkarni, 'A high accuracy algorithm for recognition of handwritten numerals,' Pattern Recognition, vol. 21, no. 4, pp. 287-291, 1988 https://doi.org/10.1016/0031-3203(88)90041-6
  6. 김수형, 정선화, 오일석, '필기 한글 문자의 오프라인 인식에 관한 사례연구,' 추계 정보학회 학술발표 논문집, pp. 77-82,1988
  7. 김삼수, 곽희규, 김수형, '광학 폰트 인식에 관한 연구 동향 조사' 정보통신논문지, 제5권, 제1호, pp. 1-16, 2001
  8. 김철한, 박태형, 'PCB 조립 장비를 위한 거버문자 인식 알고리즘 개발,' 2000 한국자동제어 학술회의 논문집, 2000
  9. 오혜원, 박태형, '다중 인식기 및 검증기를 갖는 거버 문자 인식 시스템,' 한국 퍼지 및 지능시스템 학회 논문지, vol. 14, no. 1, pp. 20-27, 2003
  10. Y. Y. Tang, H. D. Cheng, C. Y. Suen, 'Size-rotation-invariant character recognition,' Proc. Int. Conf. on Computer Processing of Chinese and Oriental Languages, pp, 161-165, 1988
  11. D. C. Tseng, H. P. Chiu, 'Fuzzy ring data for invariant handwritten chinese character recognition,' Proc. of the 13th Int. Conf. on Pattern Recognition, vol. 3, pp. 94-98, 1996 https://doi.org/10.1109/ICPR.1996.546801
  12. A. Khotanzad, Y. H. Hong, 'Invariant image recognition by Zernike moments,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp.489-497, 1990 https://doi.org/10.1109/34.55109
  13. A. Khotanzad, J. H. Lu, 'Object recognition using a neural network and invariant Zernike features,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 200-205, 1989 https://doi.org/10.1109/CVPR.1989.37850
  14. A. Khotanzad, J. H. Lu, 'Classification of invariant image representations using a neural network,' IEEE Trans. on Signal Processing, vol. 38, no. 6, pp. 1028-1038, 1990 https://doi.org/10.1109/29.56063
  15. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Prentice Hall, 1999
  16. M. T. Hangan, H. B. Demuth, M. H. Beale, Neural Network Design, PWS publishing company, 1996
  17. Z. Michalewicz, Genetic Algorithms+Data Structures=Evolution Program, Springer, 1992