DOI QR코드

DOI QR Code

Geometric Effects on Damping Characteristics of Acoustic Cavity for the Control of Combustion Instabilities

연소불안정 제어를 위한 음향공의 감쇠에 대한 형상 효과

  • Published : 2006.06.30

Abstract

Acoustic cavity as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified in atmospheric temperature. First, harmful resonant frequency in a modeling chamber can be damped effectively by the installation of properly-tuned acoustic cavity. Besides, geometric effects of acoustic cavity on damping characteristics are analyzed and compared quantitatively. Satisfactory agreements have been achieved with linear acoustic analysis and experimental approach. Results show that the acoustic cavity of the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant frequency. Finally, it is proved that an optimal design process is indispensable for the effective control of combustion instabilities.

액체 로켓엔진에서의 고주파 연소불안정 제어를 위한 수동 안정화 제어 기구로 음향공을 적용하여 감쇠 효과의 적합성을 검증하였다. 우선, 기본형 모델링 연소실에서 발생한 유해 공진주파수는 음향공의 동조를 통하여 효과적으로 감쇠될 수 있음을 확인 하였다. 또한, 음향공의 기하학적 형상에 따른 음향 감쇠 효과를 비교하기 위하여, 주요 설계 변수를 변화시킨 몇 가지 음향공 모델에 대해 유해 공진주파수 감쇠 효과를 정량적으로 비교, 분석하였다. 선형음향해석과 실험적 방법 모두 만족할만한 일치성을 나타내었으며, 오리피스 입구 면적이 가장 크거나 오리피스 길이가 가장 짧은 경우에서 감쇠 효과가 가장 크게 나타났다. 결론적으로 음향공을 이용한 최적의 음향공 제어를 위해서는 음향공 부피를 고려한 최적의 음향공 설계가 절대적으로 필요함을 입증한다.

Keywords

References

  1. Harrje D. J and Reardon, F. H (eds), 'Liquid Propellant Rocket combustion instability', SP-194, NASA, 1972
  2. Natanzon, M. S., 1996, Combustion Instability, (Natanzon, M. S. and Culick, F. E. C., eds)
  3. Laudien, E., Pongratz, R., and Preclik, D., 'Experimental Procedures Aiding the Design of Acoustic Cavities', in Liquid Rocket Engine Combustion Instability (Yang, V. and Anderson, W. E., eds), Progress in Astronautics and Aeronautics, Vol. 169, AIAA, Washington DC, 1995, pp. 377-399
  4. Ko, Y. S., Lee, K. J. and Kim, H. J., 2004, 'Acoustic Tests on Atmospheric Condition in a Liquid Rocket Engine Chamber', Transactions of KSME(B), Vol. 28, No. 1, pp. 16-23 https://doi.org/10.3795/KSME-B.2004.28.1.016
  5. Sohn, C. H., and Kim, Y. M., 2002, 'A Numerical Study on Acoustic Behavior in Combustion Chamber with Acoustic Cavity', Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 30, No. 4, pp. 28-37 https://doi.org/10.5139/JKSAS.2002.30.4.028
  6. Kim, S.-K., Kim, H. J. and Sooo, C. H., 2004, 'Development of Analysis Code for Evaluation of Acoustic Stability of Rocket Engine Combustor with Various Designs', Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 32, No. 6, pp. 110-116
  7. Kim, H. J., Kim, S.-K. and Seol, W. S., 2004, 'Acoustic Analysis for Design Optimization of Hub-Blade Baffle in Liquid Rocket Engine', Transactions of the KSME(B), Vol. 28, No. 8, pp. 945-952 https://doi.org/10.3795/KSME-B.2004.28.8.945
  8. Oberg, C. L., 1971, 'Combustion Stabilization with Acoustic Cavities', Journal of Spacecraft and Rockets, Vol. 8, No. 12, pp. 1220-1225 https://doi.org/10.2514/3.30366
  9. NASA, 1974, 'Liquid Rocket Engine Combustion Stabilization Devices', NASA SP-8113
  10. Rocker, M. and Nesman, T. E., 1998, 'Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber', The Tenth Annual Symposium of the Penn State University Propulsion Engineering Research Center, pp. 9-17
  11. Christensen, E. and Nesman, T., 1998, 'Fastrac Rocket Engine Combustion Chamber Acoustic Cavities', The Tenth Annual Symposium of the Penn State University Propulsion Engineering Research Center, pp. 18-23
  12. McGough, C. B., McBride, J. M., and Hewitt, R. A., 1970, 'Acoustic Liner Feasibility Program', NASA CR-111405
  13. Park, I. S. and Sohn, C. H., 2005, 'A Numerical Study on Acoustic Behavior in Gas Turbine Combustor with Acoustic Resonator', Transactions of KSME(B), Vol. 29, No. 1, pp. 95-102 https://doi.org/10.3795/KSME-B.2005.29.1.095
  14. Kim, H. J., and Kim, S.-K., 2006, 'A Study on the Acoustic Damping Characteristics of Acoustic Cavities in a Liquid Rocket Combustor', Transactions of KSME(B), Vol. 30, No. 1, pp. 32-40 https://doi.org/10.3795/KSME-B.2006.30.1.032
  15. Morse, P. M. and Ingard, K. U., 1968, Theoretical Acoustics, 1st ed., Princeton Univ. Press
  16. Lee, B. H., 1999, Acoustics, Minum Inc.

Cited by

  1. Damping Characteristic of Helmholtz Resonator according to Its Geometry and Sound Pressure Level vol.38, pp.10, 2010, https://doi.org/10.5139/JKSAS.2010.38.10.966