DOI QR코드

DOI QR Code

Morphology and Molecular Phylogeny of Hypnea flexicaulis(Gigartinales, Rhodophyta) from Korea

  • Geraldino, Paul John L. (Department of Biology, Chungnam National University) ;
  • Yang, Eun-Chan (Department of Biology, Chungnam National University) ;
  • Bu, Sung-Min (Department of Biology, Chungnam National University)
  • Published : 2006.12.31

Abstract

Morphology and molecular phylogeny of a red algal species, Hypnea flexicaulis that is recently described from Japan, were investigated based on 23 collections from Korea (21), Taiwan (1), and the Philippines (1). Hypnea flexicaulis has percurrent axes with flexuous, antler-like branches which have wide branching angles, and abaxially curved ultimate branchlets. In order to study DNA divergence and phylogenetic relationships of the species, we determined plastid rbcL and mitochondrial cox1 sequences from the 23 collections. All 21 specimens from five different locations in Korea were almost identical to H. flexicaulis from Japan in rbcL sequences. Although there was a difference of three to five base pairs (bp) between samples from Korea and the Philippines or between the Philippines and Taiwan, Bayesian analyses of the rbcL data showed that all specimens from Korea, Japan, the Philippines, and Taiwan were strongly monophyletic. However, it is interesting that specimens from the Philippines differed by 31-34 base pairs in mitochondrial cox1 gene from those of materials from Korea and Taiwan, which differed by one to seven bp in rbcL between them. Although H. boergesenii is different from H. flexicaulis in having many antler-like branchlets, both appeared as sisters in all analyses of the rbcL data. This is the first report of H. flexicaulis from Korea based on morphology, rbcL, and cox1 gene sequences.

Keywords

References

  1. Burger G., Saint-Louis D., Gray M.W. and Lang B.F. 1999. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11: 1675-1694 https://doi.org/10.1105/tpc.11.9.1675
  2. Freshwater D.W. and Rueness J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species based on rbcL nucleotide sequence analysis. Phycologia 33: 187-194 https://doi.org/10.2216/i0031-8884-33-3-187.1
  3. Freshwater D.W., Fredericq S., Butler B.S., Hommersand M.H. and Chase M.W. 1994. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc. Nat. Acad. Sci. U.S.A. 91: 7281-7285
  4. Gavio B. and Fredericq S. 2002. Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur. J. Phycol. 37: 349-360 https://doi.org/10.1017/S0967026202003839
  5. Guiry M.D. et al. 2006. AlgaeBase version 4.1 World-wide Web electronic publication. National University of Ireland, Galway. http://www.algaebase.org; searched on 11 November 2006
  6. Haroun R.J. and Prud'Homme van Reine W.F. 1993. A biogeographical study of Laurencia and Hypnea species of the Macronesian region. Courier Forsch. Inst. Senkenberg. 159:119-125
  7. Hommersand M.H. and Fredericq S. 2001. Biogeography of the marine red algae of the South African West Coast: a molecular approach. Proc. Inter. Seaweed Symp. 17: 325-336
  8. Huelsenbeck J. and Ronquist F. 2003. MrBayes, Version 3.0. Evolutionary Biology Centre, Uppsala University, Uppasala
  9. Kraft G.T., Liao L.M., Millar A.J.K., Coppejans E.G.G., Hommersand M.H. and Freshwater D.W. 1999. Marine benthic red algae (Rhodophyta) from Bulusan, Sorsogon province, southern Luzon, Philippines. Philipp. Scient. 36: 1-50
  10. Lamouroux J.V.F. 1813. Essai sur les genres de la famille des thalassiophytes non articulées. Ann. Mus. Hist. Nat., Paris 20: 21-47, 115-139, 267-293, Plates 7-13. Notes: Reprinted as 22339
  11. Leblanc C., Boyen C., Richard O., Bonnard G., Grienenberger J.M. and Kloareg B. 1995. Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. J. Mol. Biol. 250: 484-495 https://doi.org/10.1006/jmbi.1995.0392
  12. Lee Y.P. and Kang S.Y. 2001. A catalogue of the seaweeds in Korea. Cheju National University Press, Jeju. 662 pp
  13. Lin S.M., Fredericq S. and Hommersand M.H., 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycoryoideae, subfam. nov. J. Phycol. 37: 881-899 https://doi.org/10.1046/j.1529-8817.2001.01012.x
  14. Provan J., Murphy S. and Maggs C.A. 2004. Universal plastid primers for Chlorophyta and Rhodophyta. Eur. J. Phycol. 39: 43-50 https://doi.org/10.1080/09670260310001636668
  15. Robba L., Russell S.J., Barker G.L. and Brodie J. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Amer. J. Bot. 93: 1101-1108 https://doi.org/10.3732/ajb.93.8.1101
  16. Saunders G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil. Trans. R. Soc. B. 360: 1879-1888 https://doi.org/10.1098/rstb.2005.1719
  17. Shin W.G. and Boo S.M. 1994. A systematic study on the genus Hypnea (Gigartinales, Rhodophyta) in Korea. Korean J. Phycol. 9: 7-20
  18. Tanaka T. 1941. The genus Hypnea from Japan. Sci. Pap. Inst. Algol. Res., Fac. Sci. Hokkaido Univ. 2: 227-250
  19. Yamagishi Y. and Masuda M. 2000. A taxonomic revision of a Hypnea charoides-valentiae complex (Rhodophyta, Gigartinales) in Japan, with a description of Hypnea flexicaulis sp. nov. Phycol. Res. 48: 27-35 https://doi.org/10.1111/j.1440-1835.2000.tb00127.x
  20. Yamagishi Y., Masuda M., Abe T., Uwai S., Kogame K., Kawaguchi S. and Phang S.M. 2003. Taxonomic notes on marine algae from Malaysia. XI. Four species of Rhodophyceae. Bot. Mar. 46: 534-547 https://doi.org/10.1515/BOT.2003.056
  21. Yang E.C. and Boo S.M. 2004. Evidence for two independent lineages of Griffithsia (Ceramiaceae, Rhodophyta) based on plastid protein-coding psaA, and rbcL gene sequences. Mol. Phylogenet. Evol. 31: 680-688 https://doi.org/10.1016/j.ympev.2003.08.014
  22. Yang E.C. and Boo S.M. 2006. A red alga-specific phycoerythrin gene for biodiversity surveys of callithamnioid algae. Mol. Ecol. Notes 6: 533-535 https://doi.org/10.1111/j.1471-8286.2005.01216.x
  23. Yang H.N., Wang W.L. and Liao L.M. 1994. Marine algal flora of Pengchia Yu and its special place in the marine phytogeography of Taiwan. Bot. Mar. 37: 429-432 https://doi.org/10.1515/botm.1994.37.5.429
  24. Womersley H.B.S. 1998. The Marine Benthic Flora of southern Australia, Rhodophyta. Part IIIC. State herbarium of South Australia, South Australia. 535 pp
  25. Zuccarello G.C., Burger G., West J.A. and King R.J. 1999. A Mitochandrial marker for red algal intraspecific relationship. Mol. Ecol. 8: 1443-1447 https://doi.org/10.1046/j.1365-294x.1999.00710.x

Cited by

  1. Molecular diversity and morphology of the genus Actinotrichia (Galaxauraceae, Rhodophyta) from the western Pacific, with a new record of A. robusta in the Andaman Sea vol.28, pp.1, 2013, https://doi.org/10.4490/algae.2013.28.1.053
  2. Genetic structure and distribution of Gelidium elegans (Gelidiales, Rhodophyta) in Korea based on mitochondrial cox1 sequence data vol.98, pp.1, 2012, https://doi.org/10.1016/j.aquabot.2011.12.005
  3. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear Ces A, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov. vol.101, 2016, https://doi.org/10.1016/j.ympev.2016.05.018
  4. Hypneaspecies (Gigartinales, Rhodophyta) from the southeastern coast of Brazil based on molecular studies complemented with morphological analyses, including descriptions ofHypnea edenianasp. nov. andH. flavasp. nov. vol.49, pp.4, 2014, https://doi.org/10.1080/09670262.2014.981589
  5. Extension of the distribution range of Hypnea stellulifera (Cystocloniaceae, Rhodophyta) to the South Atlantic: Morphological and molecular evidence vol.123, 2015, https://doi.org/10.1016/j.aquabot.2014.12.003
  6. Species-delimitation and phylogenetic analyses of some cosmopolitan species ofHypnea(Rhodophyta) reveal synonyms and misapplied names toH. cervicornis, including a new species from Brazil vol.52, pp.5, 2016, https://doi.org/10.1111/jpy.12436
  7. Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0197-y
  8. GENETIC DATA HINT AT A COMMON DONOR REGION FOR INVASIVE ATLANTIC AND PACIFIC POPULATIONS OF GRACILARIA VERMICULOPHYLLA (GRACILARIALES, RHODOPHYTA)1 vol.46, pp.6, 2010, https://doi.org/10.1111/j.1529-8817.2010.00905.x
  9. Genetic diversity of Gracilaria changii (Gracilariaceae, Rhodophyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis vol.23, pp.2, 2011, https://doi.org/10.1007/s10811-010-9535-5
  10. Taxonomic revision of Gelidium tsengii and Gelidium honghaiwanense sp. nov. (Gelidiales, Rhodophyta) from China based upon molecular and morphological data analyses 2017, https://doi.org/10.1007/s00343-017-5340-1
  11. Phylogeny and distribution of the genusPikea(Gigartinales, Rhodophyta) with special reference toP. yoshizakiifrom Korea vol.55, pp.1, 2016, https://doi.org/10.2216/15-80.1
  12. Kappaphycus malesianus sp. nov.: a new species of Kappaphycus (Gigartinales, Rhodophyta) from Southeast Asia vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0155-8
  13. Radiation of the Red Algal Parasite Congracilaria babae onto a Secondary Host Species, Hydropuntia sp. (Gracilariaceae, Rhodophyta) vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0097450
  14. Molecular diversity of the calcified red algal genusTricleocarpa(Galaxauraceae, Nemaliales) with the description ofT. jejuensisandT. natalensis vol.52, pp.4, 2013, https://doi.org/10.2216/13-155.1
  15. Molecular identification of gelidioid algae (Gelidiales, Rhodophyta) from Singapore with a description ofGelidium sentosaense sp. nov. vol.55, pp.3, 2016, https://doi.org/10.2216/15-133.1
  16. Phylogeny, species diversity and biogeographic patterns of the genusTricleocarpa(Galaxauraceae, Rhodophyta) from the Indo-Pacific region, includingT. confertussp. nov. from Taiwan vol.50, pp.4, 2015, https://doi.org/10.1080/09670262.2015.1076892
  17. MOLECULAR PHYLOGENY OF GRACILARIA SPECIES INFERRED FROM MOLECULAR MARKERS BELONGING TO THREE DIFFERENT GENOMES1 vol.46, pp.6, 2010, https://doi.org/10.1111/j.1529-8817.2010.00903.x
  18. Hypnea musciformis(Cystocloniaceae) from the Yucatan Peninsula: morphological variability in relation to life-cycle phase vol.55, pp.2, 2016, https://doi.org/10.2216/15-118.1
  19. A new Contribution to the Alien Red Macroalgal Flora of Greece (Eastern Mediterranean) with Emphasis onHypneaSpecies vol.32, pp.4, 2011, https://doi.org/10.7872/crya.v32.iss4.2011.393
  20. Description of Hypnea pseudomusciformis sp. nov., a new species based on molecular and morphological analyses, in the context of the H. musciformis complex (Gigartinales, Rhodophyta) vol.27, pp.6, 2015, https://doi.org/10.1007/s10811-014-0488-y
  21. Transfer of the red algaGelidium zollingeriSonder (Gelidiales) toYonagunia(Halymeniales) based on morphological and molecular evidence vol.52, pp.3, 2013, https://doi.org/10.2216/12-092.1
  22. PHYLOGENETIC RELATIONSHIPS WITHIN THE GENUSHYPNEA(GIGARTINALES, RHODOPHYTA), WITH A DESCRIPTION OFH. CAESPITOSASP. NOV. vol.46, pp.2, 2010, https://doi.org/10.1111/j.1529-8817.2009.00804.x
  23. Molecular evidence for recolonization of Ceramium japonicum (Ceramiaceae, Rhodophyta) on the west coast of Korea after the last glacial maximum vol.52, pp.4, 2009, https://doi.org/10.1515/BOT.2009.005
  24. Phylogenetic Relationships ofGelidiella(Gelidiales, Rhodophyta) from Madagascar with a Description ofGelidiella incrassatasp. nov. vol.36, pp.2, 2015, https://doi.org/10.7872/crya.v36.iss2.2015.219
  25. Parviphycus albertanoae sp. nov. (Gelidiales, Rhodophyta) from the Mediterranean Sea vol.53, pp.3, 2014, https://doi.org/10.2216/13-176.1
  26. Genetic connectivity between trans-oceanic populations of Capreolia implexa (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile vol.119, 2014, https://doi.org/10.1016/j.aquabot.2014.08.004
  27. Genetic identification of source and likely vector of a widespread marine invader vol.7, pp.12, 2017, https://doi.org/10.1002/ece3.3001
  28. A NEW AGAROPHYTE SPECIES, GELIDIUM EUCORNEUM SP. NOV. (GELIDIALES, RHODOPHYTA), BASED ON MOLECULAR AND MORPHOLOGICAL DATA1 vol.47, pp.4, 2011, https://doi.org/10.1111/j.1529-8817.2011.01005.x
  29. First record of Neosiphonia echinata (Rhodomelaceae, Rhodophyta) in the South Pacific: an introduced species in Southeast Asia vol.58, pp.5, 2015, https://doi.org/10.1515/bot-2015-0015
  30. Wilsonosiphonia gen. nov. (Rhodomelaceae, Rhodophyta) based on molecular and morpho-anatomical characters vol.53, pp.2, 2017, https://doi.org/10.1111/jpy.12512
  31. Pterocladiella feldmanniisp. nov. andP. hameliisp. nov. (Gelidiales, Rhodophyta), Two New Species Uncovered in Madagascar During the Atimo Vatae Expedition vol.37, pp.3, 2016, https://doi.org/10.7872/crya/v37.iss3.2016.179
  32. Phylogenetic relationships and distribution of Gelidium crinale and G. pusillum (Gelidiales, Rhodophyta) using cox1 and rbcL sequences vol.27, pp.2, 2012, https://doi.org/10.4490/algae.2012.27.2.083
  33. The presence of exotic Hypnea flexicaulis (Rhodophyta) in the Mediterranean Sea as indicated by morphology, rbcL and cox1 analyses vol.95, pp.1, 2011, https://doi.org/10.1016/j.aquabot.2011.02.009
  34. Mitochondrial cox1 and cob sequence diversities in Gelidium vagum (Gelidiales, Rhodophyta) in Korea vol.29, pp.1, 2014, https://doi.org/10.4490/algae.2014.29.1.015
  35. Four novel Gelidium species (Gelidiales, Rhodophyta) discovered in Korea: G. coreanum, G. jejuensis, G. minimum and G. prostratum vol.51, pp.4, 2012, https://doi.org/10.2216/11-117.1
  36. The unicellular green alga Dunaliella salina Teod. as a model for abiotic stress tolerance: genetic advances and future perspectives vol.26, pp.1, 2011, https://doi.org/10.4490/algae.2011.26.1.003
  37. Genetic differentiation and distribution of Pyropia acanthophora (Bangiales, Rhodophyta) in the Philippines vol.52, pp.1, 2017, https://doi.org/10.1080/09670262.2016.1230786
  38. Two-gene sequences and morphology of Gelidium zollingeri (Kutzing) comb. nov. (Gelidiales, Rhodophyta) vol.26, pp.1, 2011, https://doi.org/10.4490/algae.2011.26.1.033
  39. Assessing the use of mitochondrial cox1 gene and cox2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia vol.25, pp.3, 2013, https://doi.org/10.1007/s10811-012-9942-x
  40. Phylogeny of Phyllophoraceae (Rhodophyta, Gigartinales) revealsAsterfilopsis gen. nov. from the Southern Hemisphere vol.55, pp.5, 2016, https://doi.org/10.2216/16-9.1
  41. Assessment of Four Molecular Markers as Potential DNA Barcodes for Red Algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0052905
  42. Molecular evidence confirms the parasite Congracilaria babae (Gracilariaceae, Rhodophyta) from Malaysia vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0166-5
  43. Genetic segregation and differentiation of a common subtidal alga Pterocladia lucida (Gelidiales, Rhodophyta) between Australia and New Zealand vol.28, pp.3, 2016, https://doi.org/10.1007/s10811-015-0699-x
  44. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae vol.6, pp.1, 2016, https://doi.org/10.1038/srep35337
  45. Seasonal growth and reproductive status of Grateloupia subpectinata (Rhodophyta) on the east coast of Korea vol.19, pp.1, 2016, https://doi.org/10.1186/s41240-016-0013-0
  46. Effects of Seawater Salinity and Temperature on Growth and Pigment Contents inHypnea cervicornisJ. Agardh (Gigartinales, Rhodophyta) vol.2013, 2013, https://doi.org/10.1155/2013/594308
  47. Morphology and systematics ofCalliblepharis hypneoides, sp. nov.(Cystocloniaceae, Rhodophyta) from the Atlantic Iberian Peninsula vol.48, pp.4, 2013, https://doi.org/10.1080/09670262.2013.844860
  48. Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta) vol.20, pp.2, 2008, https://doi.org/10.1007/s10811-007-9201-8
  49. Phylogeny and morphology of Parviphycus myriocladus (Børgesen) comb. nov. (Gelidiales, Rhodophyta) from Asian waters vol.58, pp.6, 2015, https://doi.org/10.1515/bot-2015-0066
  50. Additional records of Gelidiella fanii (Gelidiales, Rhodophyta) from the western Pacific based on morphology, rbcL and cox1 analyses vol.53, pp.4, 2010, https://doi.org/10.1515/BOT.2010.037
  51. Two new species and two new records ofPterocladiella(Gelidiales) from Malaysia based on analyses ofrbcL andcoxI gene sequences vol.52, pp.6, 2013, https://doi.org/10.2216/12-123.1
  52. New record of Hypnea flexicaulis in New Zealand and description of Calliblepharis psammophilus sp. nov. vol.58, pp.6, 2015, https://doi.org/10.1515/bot-2015-0053
  53. Genetic and morphological analyses of Gracilaria firma and G. changii (Gracilariaceae, Rhodophyta), the commercially important agarophytes in western Pacific vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0182176
  54. Taxonomy and distribution of selected species of the agarophyte genus Gelidium (Gelidiales, Rhodophyta) vol.26, pp.2, 2014, https://doi.org/10.1007/s10811-013-0111-7
  55. New Record of the non-Native SeaweedGracilaria parvisporain Baja California - A Note on Vergara-Rodarteet al.(2016) vol.37, pp.4, 2016, https://doi.org/10.7872/crya/v37.iss4.2016.257
  56. (Gelidiales, Rhodophyta) pp.00223646, 2018, https://doi.org/10.1111/jpy.12802
  57. Gelidium brasiliense sp. nov. (Gelidiales, Rhodophyta): a diminutive agarophyte from Brazil pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1678-9
  58. A genetic diversity assessment of Halymenia malaysiana (Halymeniaceae, Rhodophyta) from Malaysia and the Philippines based on COI-5P and rbcL sequences pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1484-4
  59. vol.58, pp.2, 2018, https://doi.org/10.1002/tax.582023
  60. . (Ceramiales, Rhodophyta) vol.58, pp.1, 2019, https://doi.org/10.1080/00318884.2018.1517531