DOI QR코드

DOI QR Code

Solvothermal Synthesis, Crystal Structure, and Magnetic Properties of [Co3(SDA)3(DMF)2]; 2-D Layered Metal-organic Framework Derived from 4,4'-Stilbenedicarboxylic Acid (H2SDA)

  • Park, Gyung-Se (Department of Chemistry, Kunsan National University) ;
  • Kim, Hyun-Uk (National Creative Research Initiative Center for Smart Supramolecules and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Gang-Ho (Department of Chemistry, Kyungpook National University) ;
  • Park, Sang-Kyu (Department of Chemistry, Chonbuk National University) ;
  • Kim, Ki-Moon (National Creative Research Initiative Center for Smart Supramolecules and Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology)
  • Published : 2006.03.20

Abstract

Keywords

References

  1. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127 https://doi.org/10.1126/science.1083440
  2. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, Omar M. J. Am. Chem. Soc. 2005, 127, 1504 https://doi.org/10.1021/ja045123o
  3. Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K. Chem. Eur. J. 2005, 11, 3521 https://doi.org/10.1002/chem.200401201
  4. Ihm, C.; Kim, J.; Paek, K. Bull. Korean Chem. Soc. 2005, 26, 805 https://doi.org/10.5012/bkcs.2005.26.5.805
  5. Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. 2004, 126, 32 https://doi.org/10.1021/ja038678c
  6. Bradshaw, D.; Prior, T. J.; Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J. J. Am. Chem. Soc. 2004, 126, 6106 https://doi.org/10.1021/ja0316420
  7. Fujita, M.; Kwon, Y.-J.; Washizu, S.; Ogura, K. J. Am. Chem. Soc. 1994, 116, 1151 https://doi.org/10.1021/ja00082a055
  8. Seo, J. S.; Wang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.; Kim, K. Nature 2000, 404, 982 https://doi.org/10.1038/35010088
  9. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469 https://doi.org/10.1126/science.1067208
  10. Rao, C. N. R.; Natarajan, S.; aidhyanathan, R. Angew. Chem. Int. Ed. 2004, 43, 1466 https://doi.org/10.1002/anie.200300588
  11. Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem. Int. Ed. 2004, 43, 5033 https://doi.org/10.1002/anie.200460712
  12. Sudik, A. C.; Cote, A. P.; Yaghi, O. M. Inorg. Chem. 2005, 44, 2998 https://doi.org/10.1021/ic050064g
  13. Rueff, J.; Nierengarten, J.; Gilliot, P.; Demessence, A.; Cregut, O.; Drillon, M.; Rabu, P. Chem. Mater. 2004, 16, 2933 https://doi.org/10.1021/cm049792c
  14. Hou, H.; Li, L.; Zhu, Y.; Fan, Y.; Qiao, Y. Inorg. Chem. 2004, 43, 4767 https://doi.org/10.1021/ic049728x
  15. Martin, J.; Hess, R.; Boyle, P. Inorg. Chem. 2004, 43, 3242 https://doi.org/10.1021/ic049881r
  16. Beghidja, A.; Hallynck, S.; Welter, R.; Rabu, P. Eur. J. Inorg. Chem. 2005, 662
  17. Benelli, C.; Gatteschi, D. Chem. Rev. 2002, 102, 2369 https://doi.org/10.1021/cr010303r
  18. Kahn, O. Acc. Chem. Res. 2000, 33, 647 https://doi.org/10.1021/ar9703138
  19. Ohba, M.; Okawa, H. Coord. Chem. Rev. 2000, 198, 313 https://doi.org/10.1016/S0010-8545(00)00233-2
  20. Miller, J.; Epstein, A.; Reiff, W. Chem. Rev. 1988, 88, 201 https://doi.org/10.1021/cr00083a010
  21. Foguet-Albiol, D.; O'Brien, T.; Wernsdorfer, W.; Moulton, B.; Zaworotko, M.; Abboud, K.; Christou, G. Angew. Chem. Int. Ed. 2005, 44, 897 https://doi.org/10.1002/anie.200461820
  22. Ferbinteanu, M.; Miyasaka, H.; Wernsdorfer, W.; Nakata, K.; Sugiura, K.; Yamashita, M.; Coulon, C.; Clerac, R. J. Am. Chem. Soc. 2005, 127, 3090 https://doi.org/10.1021/ja0468123
  23. Chakov, N.; Soler, M.; Wernsdorfer, W.; Abboud, K.; Christou, G. Inorg. Chem. 2005, 44, 5304 https://doi.org/10.1021/ic050379w
  24. Miyasaka, H.; Clérac, R.; Wernsdorfer, W.; Lecren, L.; Bonhomme, C.; Sugiura, K.; Yamashita, M. Angew. Chem., Int. Ed. 2004, 43, 2801 https://doi.org/10.1002/anie.200353563
  25. Zhu, Z.; Karasawa, S.; Koga, N. Inorg. Chem. 2005, 44, 6004 https://doi.org/10.1021/ic048441x
  26. Beghidja, A.; Hallynck, S.; Welter, R.; Rabu, P. Eur. J. Inorg. Chem. 2005, 662
  27. Miyasaka, H.; Ieda, H.; Masamoto, N.; Sugiura, K; Yamashita, M. Inorg. Chem. 2003, 42, 3509 https://doi.org/10.1021/ic026261m
  28. Eddaoudi, M.; Moler, D.; Li, H.; Chen, B.; Reineke, T.; O'Keeffe, M.; Yaghi, O. Acc. Chem. Res. 2001, 34, 319 https://doi.org/10.1021/ar000034b
  29. Clegg, W.; Little, I. R.; Straughan, B. P. J. Chem. Soc., Chem. Commun. 1985, 73
  30. Li, H.; Davis, C. E.; Groy, T. L.; Kelley, D. G.; Yaghi, O. M. J. Am. Chem. Soc. 1998, 120, 2186 https://doi.org/10.1021/ja974172g
  31. Kumagai, H.; Oka, Y.; Inoue, K.; Kurmoo, M. J. Phys. Chem. Sol. 2004, 65, 55 https://doi.org/10.1016/j.jpcs.2003.08.013
  32. Viertelhaus, M.; Adler, P.; Clerac, R.; Anson, C. E.; Powell, A. K. Eur. J. Inorg. Chem. 2005, 692
  33. Beghidja, A.; Hallynck, S.; Welter, R.; Rabu, P. Eur. J. Inorg. Chem. 2005, 662
  34. Toland, W. G.; Wilkes, J.; Brutschy, F. J. J. Am. Chem. Soc. 1953, 75, 2263 https://doi.org/10.1021/ja01105a517

Cited by

  1. 4,4′-stilbenedicarboxylate) vol.61, pp.17, 2008, https://doi.org/10.1080/00958970801968799
  2. Two novel complexes based on hexagonal-planar {Co6} and rhombic {Zn4} clusters with different eight-connected topologies vol.14, pp.17, 2012, https://doi.org/10.1039/c2ce25224d
  3. Synthesis and Crystal Structure of a 3D Samarium-Organic Framework Containing Vacant Chelating Sites vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1349
  4. Unusual Magnetic Behaviors and Electronic Configurations Driven by Diverse Co(II) or Mn(II) MOF Architectures vol.53, pp.24, 2014, https://doi.org/10.1021/ic501898x
  5. Interpenetration of three-periodic networks in crystal structures: Description and classification methods, geometrical-topological conditions of implementation vol.55, pp.7, 2014, https://doi.org/10.1134/S0022476614070130
  6. Mesoporous stilbene-based lanthanide metal organic frameworks: synthesis, photoluminescence and radioluminescence characteristics vol.46, pp.2, 2017, https://doi.org/10.1039/C6DT03755K
  7. ) Derived from Co/Ni-MOF for Bifunctional Catalysts in Rechargeable Zn-Air Batteries pp.12295949, 2018, https://doi.org/10.1002/bkcs.11603
  8. Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal–organic frameworks for oxygen reduction and evolution reactions in alkaline solution vol.48, pp.11, 2018, https://doi.org/10.1007/s10800-018-1245-8
  9. topology vol.64, pp.7, 2008, https://doi.org/10.1107/S1600536808016267
  10. Two-dimensional metal–organic network with an unusual 36 topology and a cubic close packing pattern vol.10, pp.8, 2008, https://doi.org/10.1039/b801536h
  11. Magnetic metal–organic frameworks vol.38, pp.5, 2009, https://doi.org/10.1039/b804757j
  12. Synthesis, structure and antimicrobial activity of manganese(II) and cobalt(II) complexes of the polyether ionophore antibiotic Sodium Monensin A vol.102, pp.1, 2006, https://doi.org/10.1016/j.jinorgbio.2007.06.033
  13. Factors in the Synthesis of 3-D Metal-Organic Framework, [Zn(HCOO)3](C2H8N), Derived from Decomposition of Solvent vol.53, pp.1, 2006, https://doi.org/10.5012/jkcs.2009.53.1.073
  14. Second-ligand-dependent multi-fold interpenetrated architectures of two 3-D metal(II)–organic coordination polymers vol.362, pp.5, 2006, https://doi.org/10.1016/j.ica.2008.07.030
  15. Synthesis and Structure of a 3-D Metal-Organic Framework, [Cd2(1,4-cyclohexanedicarboxylate)2·DMF], Comprising Unusual Two Different Ligand Conformations vol.33, pp.9, 2006, https://doi.org/10.5012/bkcs.2012.33.9.3111
  16. Synthesis, structure, and photoluminescence properties of lanthanide based metal organic frameworks and a cadmium coordination polymer derived from 2,2′-diamino-trans 4,4′-stilbenedicarbox vol.478, pp.None, 2006, https://doi.org/10.1016/j.ica.2018.04.005
  17. Synthesis of Porous Carbon‐coated Cobalt Catalyst through Pyrolyzing Metal-Organic Framework and their Bifunctional OER/ORR Catalytic Activity for Zn‐Air Rechargeable Batteries vol.41, pp.3, 2006, https://doi.org/10.1002/bkcs.11973