DOI QR코드

DOI QR Code

Characteristics of Organic Substances Produced from Cochlodiniumpolykrikoides (Dinophyceae)

Cochlodinium polykrikoides(Dinophyceae)에서 분비되는 유기물질의 특성

  • Kang, Yang-Soon (Marine Harmful Organism Research Team, National Fisheries Research & Development Institute) ;
  • Kwon, Jung-No (Research Planning Team, National Fisheries Research & Development Institute) ;
  • An, Kyoung-Ho (Marine Harmful Organism Research Team, National Fisheries Research & Development Institute)
  • 강양순 (국립수산과학원 유해생물팀) ;
  • 권정노 (국립수산과학원 연구기획팀) ;
  • 안경호 (국립수산과학원 유해생물팀)
  • Published : 2006.06.30

Abstract

Organic substances are released from phytoplankton cells during all phases of growth. The type and amounts of organic substance excreted and the effects of nutrient limitation are often highly species-specific. Dinoflagellate, Cochlodinium polykrikoides grown in batch culture produced an exopolysaccharide. Exopolysaccharide and intracellular polysaccharide concentrations increased as C. polykrikoides cultures progressed from exponential phase, through stationary phase, to declining phase. In the exponential phase, the concentration of exopolysaccharide was relatively low, but in the stationary phase, it showed a rapid increase which seemed to coincide with the depletion of nitrate from the medium. Of the 20 amino acids analyzed, proline dominated in the organic matter of all cultures ranging from 48.2 to 79.9 nmol L–1, and constituting the 20-90% of total amino acids, and followed by histamine varying from 0.7 to 47.5 nmol L–1. Leucine and cysteine were also abundant in the stationary phase. The release rates of exopolysaccharide and intracellualr polysaccharide were higher the end of stationary phase than in the exponential phase. Exopolysaccharide concentration per cell was more than two times higher during the end of stationary phase than that in exponential phase. C. polykrikoides produced extracellular polysaccharide at a rate of 47.04 pg cell–1 day–1.

Keywords

References

  1. Admiraal W., Peletier H., and Laane R.W.P.M. 1986. Nitrogen Mmetabolism of marine planktonic diatoms; excretion,assimilation and cellular pools of free amino acids in seven species with different cell size. J. Exp. Mar. Biol. Ecol. 98:241-263 https://doi.org/10.1016/0022-0981(86)90216-9
  2. Ahlgren G., Gustafsson I.B., and Boberg M. 1992. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28: 37-50 https://doi.org/10.1111/j.0022-3646.1992.00037.x
  3. Allan G.G., Lewin J., and Johnson P.G. 1972. Marine polymers: IV. Diatom polysaccharides. Bot. Mar. 15: 102-108 https://doi.org/10.1515/botm.1972.15.2.102
  4. Azam F., Field J.G., Gray J.S., Meyer-Reil L.A. and Thingstad F. 1983. The ecological role of water-column microbesmin the sea. Mar. Ecol. Prog. Ser. 10: 257-263 https://doi.org/10.3354/meps010257
  5. Azam F. and Cho B.C. 1987. Bacterial utilization of organic matter in the sea. In fletcher, M., Gray, T.R.G., nd Jones, T.G.(eds), Ecology of microbial communities. Cambridge Univ. Press Cambridge, SGM 41: 261-281
  6. Billen G. and Fontigny A. 1987. Dynamics of a Phaeocystisdominated spring bloom in Belgian coastal waters: II. Bacterioplankton dynamics. Mar. Ecol. Prog. Ser. 37: 249-257 https://doi.org/10.3354/meps037249
  7. Decho A.W. 1990. Microbial exopolymer secretions in ocean environments: their role(s), in food web and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28: 73-153
  8. Degobbis D., Fonda-Umani S., Franco P., Malej A., Precali R., and Smodlaka N. 1995. Changes in the northern Adriatic ecosystem and the hypertrophic appearance of gelatinous aggregates. Sci. Total Environ. 165: 43-58(Sp. issue) https://doi.org/10.1016/0048-9697(95)04542-9
  9. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., and Smith F. 1956. Colorimetric methods for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
  10. Eberlein K., Leal M.T., Hammer K.D., and Nickel W. 1985. Dissolved organic substances during a Phaeocystis pouchetii bloom in the German Bight, (North Sea). Mar. Biol. 89: 311-316 https://doi.org/10.1007/BF00393665
  11. Fogg G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Marina, 26:3-14. https://doi.org/10.1515/botm.1983.26.1.3
  12. Fryxell G.A., Glould Jr. R.W., and Watkins T.P. 1984. Gelatinous colonies of the diatom Thalassiosira in the Gulf Stream warm core rings, including T. fragilia sp. nov. Br. Phycol. J. 19: 141-156 https://doi.org/10.1080/00071618400650151
  13. Hellebust J.A. 1965. Excreation of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192-206 https://doi.org/10.4319/lo.1965.10.2.0192
  14. Hellebust J.A. 1974. Extracellular products. In: N.D. Steward (ed.), Algal Physiology and Biochemistry. Univ. of California Press, Berkeley. pp. 838-863
  15. Herbert D., Phipps P.J., and Strange R.E. 1971. Chemical analysis of microbial cells. In: Norris, J. R. D. W. Ribbons (eds.), Methods in Microbiology, Vol. 5B Academic Press,London. pp. 209-344
  16. Hoagland K.D., Rosowski J.R., Roemer M.R., and Gretz S.C. 1993. Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J. Phycol. 29: 537-566 https://doi.org/10.1111/j.0022-3646.1993.00537.x
  17. Jenkinson I. R. 1989. Increases in viscosity may kill fish in some blooms. In:Okaichi, T., Anderson, D. M., Nemoto, T. (Eds.), Red tides: biology, environmental science, and toxicology.Elsevier, New York, 435-438
  18. Kang Y. S., Kwon J.N. Shon J.K., Eom K.H., Hong S.J. and Kong J.Y. 2002. Cochlodinium polykrikoides: (Dinophyceae)가 생산 하는 exopolysaccharide: 질산염과 인산염의 농도에 따른 효과. Bull. Nat'l Fish. Res. Dev. Inst. Korea 61: 97-103
  19. Kim C.S., Bae H.M., Yun S.J., Cho Y.C., and Kim H.G. 2000. Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: aspects of hematological responses of fish exposed to algal blooms. Kor. J. Fish. Sci. Tech. 3: 111-117
  20. Lancelote C. 1984. Extracellular release of small and large molecules by phytoplankton in the Southern bright of the North sea. Estuar. Coastal Shelf Sci. 18: 65-77 https://doi.org/10.1016/0272-7714(84)90007-6
  21. Lee J.S. 1996. Bioactive components from red tide plankton, Cochlodinium polykrikoides. J. Kor. Fish. Soc. 29: 165-173 (in Korean)
  22. Lee C. and Cronin C. 1984. Particulate amino acids in the sea: effects of primary productivity and biological decomposition. J. Mar. Res. 42: 1075-1097 https://doi.org/10.1357/002224084788520710
  23. Leppard G.G. 1995. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems. Sci. Total Environ. 165: 103-131 (Sp. Issue) https://doi.org/10.1016/0048-9697(95)04546-D
  24. Liu H. and Buskey E.J. 2000. The exopolymer secretions (EPS) layer surrounding Aureoumbra lagunensis cells affects growth, grazing and behavior of protozoa. Limnol. Oceanogr. 45: 1187-1191 https://doi.org/10.4319/lo.2000.45.5.1187
  25. Lu M. and Stephens G.C. 1984. Demonstration of net influx of free amino acids in Phaeodactylum tricornutum using high performance liquid chromatography. J. Phycol. 20: 584-589 https://doi.org/10.1111/j.0022-3646.1984.00584.x
  26. Mague T.H., Friberg E., Hughes D.J. and Morris I. 1980. Extracellular release of carbon by marine phytoplankton: a physiological approach. Limnol. Oceanogr. 25: 262-279 https://doi.org/10.4319/lo.1980.25.2.0262
  27. Metaxatos A., Panagiotopoulosb C., and Ignatiadesa L. 2003. onosaccharide and amino acid composition of mucilage material produced from a mixture of four phytoplanktonic taxa, J. Exp. Mar. Biol. Ecol. 294: 203-217 https://doi.org/10.1016/S0022-0981(03)00269-7
  28. Myklestad S.L. 1974. Production of carbohydrates by marine planktonic diatoms. I. Comparison of nine different species in culture. J. Exp. Mar. Biol. Ecol. 29: 161-179 https://doi.org/10.1016/0022-0981(77)90046-6
  29. Myklestad S.L. 1995. Release of extracellular products by phytoplankton with special emphasis on polysaccharides.The Science of the Environment 165: 155-164
  30. Myklestad S.L., Holm-Hansen O., Varum K.L., and Volcani B.E. 1989. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. J.plankton research 11: 763-773 https://doi.org/10.1093/plankt/11.4.763
  31. Poulet S.A., and Martin-Jezequel V. 1983, Relationship between dissolved free amino acids chemical composition and growth of the marine diatom Chaetoceros debile. Mar. Biol.17: 93-100
  32. Sharp J.H. 1974. Improved analysis for particulate organic carbon and nitrogen from sea water. Limnol Oceanogr. 19:984-979 https://doi.org/10.4319/lo.1974.19.6.0984
  33. Smith D.J. and Underwood G.J.C. 1998. Exopolymer production by intertidal epipelic diatoms. Limnol. Oceanogr. 43: 1578-1591 https://doi.org/10.4319/lo.1998.43.7.1578
  34. Smith D.J. and Underwood G.J.C. 2000. The production of extracellular carbohydrates by estuarine benthic diatoms: The effects of growth phase and light and dark treatment. J.Phycol. 30: 321-333
  35. Staats N., Winde B.D., Stal L.J. and Mur L.R. 1999. Isolation and characterization of extracellular polysaccharides from epipelic diatoms Cylindrotheca clostrium and Navicular salinarum. Eur. J. Phycol. 34: 161-169 https://doi.org/10.1080/09670269910001736212
  36. Staats N., Stal L.J., and Mur L.R. 2000. Exopolysaccharide production by the epipelic diatom Cylindrotheca closterium: effects of nutrient conditions. J. Exp. Mar. Bio. Ecol. 249: 13-27 https://doi.org/10.1016/S0022-0981(00)00166-0
  37. Stachowitsch M., Fanuko N., and Richter N. 1990. Mucous aggregates in the Adriatic Sea: an overview of stages and occurrence. P.S.Z.N. Mar. Ecol. 11: 327-350 https://doi.org/10.1111/j.1439-0485.1990.tb00387.x
  38. Stein J.J. 1973. Handbook of phycological methods: Culture methods and growth measurements, Cambridge Univ.press 27-51
  39. Tago Y. and Aida K. 1977. Extracellular mucopolysaccharide closely related to bacterial floc formation. Appl. Environ,Microbiol. 34: 308-314
  40. Telek G. and Marshall N. 1974. Using a CHN analyzer to reduce carbonate interference in particulate organic carbon analysis. Mar. Biol. 24: 219-221 https://doi.org/10.1007/BF00391896
  41. Underwood G.J.C. and Smith D. J. 1998. Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microb. Ecol. 35: 116-12 https://doi.org/10.1007/s002489900066
  42. Wakeham S., Lee C., Farrington J., and Gagosian R. 1984. Biogeochemistry of particulate organic matter in the oceans. Deep-Sea Res. 31: 509-528 https://doi.org/10.1016/0198-0149(84)90099-2