DOI QR코드

DOI QR Code

Effects of Light Quantity and Quality on the Growth of the HarmfulDinoflagellate, Cochlodinium polykrikoides Margalef (Dinophyceae)

유해성 적조생물, Cochlodinium polykrikoides Margalef (Dinophyceae) 성장에 영향을 미치는 광량과 파장

  • Oh, Seok-Jin (Mie Industrial Enterprise Support Center (MIESC)) ;
  • Yoon, Yang-Ho (Faculty of Marine Technology, Chonnam National University) ;
  • Kim, Dae-Il (Marine Pollution Control Bureau, Korea Coast Guard) ;
  • Shimasaki, Yohei (Laboratory of Marine Environmental Science, Faculty of Aquaculture, Kyushu University) ;
  • Oshima, Yuji (Laboratory of Marine Environmental Science, Faculty of Aquaculture, Kyushu University) ;
  • Honjo, Tsuneo (Laboratory of Marine Environmental Science, Faculty of Aquaculture, Kyushu University)
  • 오석진 (일본 미에현 산업지원센타(MIESC)) ;
  • 윤양호 (전남대학교 해양기술학부) ;
  • 김대일 (해양경찰청 해양오염관리국) ;
  • ;
  • ;
  • Published : 2006.09.30

Abstract

The effects of light quality and irradiance on the growth of Cochlodinium polykrikoides were investigated in the laboratory. At 25°C and 30 psu the irradiance-growth curve was described as μ = 0.34 (I-9.76)/(I+12.5), (r=0.98). This suggests half-saturation photon flux density (PFD) (Ks) of 32.0 μmol photons m–2 s–1, and a compensation PFD (Ic) of 9.76 μmol photons m–2 s–1. Because the Ic equates to a depth of ca. 15.4 m, these responses suggest that irradiance at the depth around and below the thermocline in Yeosuhae Bay would provide favorable conditions for C. polykrikoides. Photoinhibition did not occur at 300 μmol photons m–2 s–1, which was the maximum irradiance used in this study. Blue (450 nm), yellow (590 nm) and red (650 nm) light had different effects on the growth of C. polykrikoides: it grew well under blue light, but not under yellow light. This implies that C. polykrikoides is more likely to cause an outbreak of red tide in the open sea where blue-green wavelengths predominate, rather than in enclosed water bodies where suspended particles absorb most of the blue wavelengths, and yellow-orange wavelengths predominate.

Keywords

References

  1. Aidar E., Gianesella-Galvao S.M.F., Sigaud T.C.S., Asano C.S., Liang T.H., Rezende K.R.V., Oishi M.K., Aranha F.J., Milani G.M. and Sandes M.A.L. 1994. Effects of light quality on growth biochemical composition and photosynthetic production in Cyclotella caspia Grunov and Tetraselmis gracilis Kylin Butcher. J. Exp. Mar. Biol. Ecol. 180: 175-187 https://doi.org/10.1016/0022-0981(94)90065-5
  2. Baba T., Hiyama S. and Tainaka T. 2001. Vertical migration of the toxic dinoflagellate Gymnodinium catenatum and toxicity of cultures oyster in Senzaki Bay, Yamaguchi Prefecture. Bull Plankton Soc. Japan 48: 95-99 (in Japanese with English abstract)
  3. Correa-Reyes J.G., Sanchez-Saavedra M.P., Siqueiros-Beltrones D.A. and Flores-Acevedo N. 2001. Isolation and growth of eight strains of benthic diatoms, cultured under two light conditions. J. Shellfish Res. 20: 603-610
  4. Faust M.A., Sager J.C. and Meeson B.W. 1982. Response of Prorocentrum mariae-lebouriae (Dinophyceae) to light of different spectral qualities and irradiances: growth and pigmentation. J. Phycol. 18: 349-356 https://doi.org/10.1111/j.1529-8817.1982.tb03195.x
  5. Figueroa F.L., Aguilera J. and Niell F.X. 1995. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur. J. Phycol. 30: 11-18 https://doi.org/10.1080/09670269500650761
  6. Guillard R.R.L. and Ryther D. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229-239 https://doi.org/10.1139/m62-029
  7. Holdsworth E.S. 1985. Effect of growth factor and light quality on the growth, pigmentation and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum. Mar. Biol. 86: 253-262 https://doi.org/10.1007/BF00397512
  8. Honjo T., Yamamoto S., Nakamura O. and Yamaguchi M. 1989. Annual cycle of motile cells of Gymnodinium nagasakiense and ecological features during the period of red tide development. In: Graneli E., Sundstrom B., Edler L. and Anderson D.M. (eds), Toxic marine phytoplankton. Elsevier, New York. pp. 165-170
  9. Jeffrey S.W. and Vesk M. 1977. Effects of blue-green light on photosynthetic pigments and chloroplast structure in the marine diatom Stephanopyxis turris. J. Phycol. 13: 271-279
  10. Kim D.-I., Matsubara A., Oh S.J., Simasaki O., Oshima Y. and Honjo T. Effects of nitrogen and phosphorus sources on utilization and growth kinetics of the harmful dinoflagellate Cochlodinium polykrikoides isolated from Yatsushiro Sea, Japan. Nippon Suisan Gakkaishi (submitted; in Japanese with English abstract)
  11. Kim D.-I., Matsuyama Y., Nagasoe S., Yamaguchi M., Yoon Y.H., Oshima Y., Imada N. and Honjo T. 2004a. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26: 1-6 https://doi.org/10.1093/plankt/fbh009
  12. Kim D.-I., Nagasoe S., Oshima Y., Yoon Y.H., Imada N. and Honjo T. 2004b. A massive bloom of Cochlodinium polykrikoides in the Yatsushiro Sea, Japan in 2000. In:Steidinger K. A., Landsberg J.P., Tomas C.R. and Vargo G.A. (eds), Harmful algae 2002. UNESCO, Florida. pp. 83-85
  13. Koizumi Y., Uchida T. and Honjo T. 1996. Diurnal vertical migration of Gymnodinium mikimotoi during a red tide in Hoketsu Bay, Japan. J. Plankton Res. 18: 289-294 https://doi.org/10.1093/plankt/18.2.289
  14. Lederman T.C. and Tett P. 1981. Problems in modeling the photosynthesis-light relationship for phytoplankton. Bot. Mar. 24: 125-134 https://doi.org/10.1515/botm.1981.24.3.125
  15. Lee C.K., Kim H.G., Lee S.G., Jung C.S., Kim H.G. and Lim W.A. 2001. Abundance of Harmful algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the coastal area of south sea of Korea and their effects of temperature, salinity irradiance and nutrient on the growth in culture. J. Korean Fish. Soc. 34: 536-544 (in Korean with English abstract)
  16. Margalef R. 1961. Hidrografia y fitoplancton de un rea marina de la costa meridional de Puerto Rico. Invest. Pesq. 18: 33-96
  17. Matsuoka K. and Iwataki M. 2004. Present status in study on a harmful unarmored dinoflagellate Cochlodinium polykrikoides Margalef. Bull. Plankton Soc. Japan 51: 38-45 (in Japanese with English abstract)
  18. Mercado J.M., S nchez P., Carmona R. and Niell F.X. 2002. Limited acclimation of photosynthesis to blue light in the seaweed Gracilaria tenuistipitata. Physiol. Plant 114: 491-498 https://doi.org/10.1034/j.1399-3054.2002.1140319.x
  19. Nelson N.B. and Prezelin B.B. 1990. Chromatic light effects and physiological modeling of absorption properties of Heterocapsa pygmaea (= Glenodinium sp.). Mar. Ecol. Prog. Ser. 63: 37-46 https://doi.org/10.3354/meps063037
  20. NFRDI 1999. Harmful algal blooms in Korean coastal waters from 1997 to 1998. National Fisheries Research and Development Institute, Busan. 215 pp (in Korean)
  21. NFRDI 2000. Harmful algal blooms in Korean coastal waters from 1999. National Fisheries Research and Development Institute, Busan. 206 pp (in Korean)
  22. Oh S.J. and Yoon Y.H. 2004. Effects of water temperature, salinity and irradiance on the growth of the toxic dinoflagellate, Gymnodinium catenatum (Graham) isolated from Yeosuhae Bay, Korea. Algae 14: 293-301 (in Korean with English abstract)
  23. Sanchez-saavedra M.P. and Voltolina D. 1994. The chemical composition of Chaetoceros sp. (Bacillariophyceae) under different light conditions. Comp. Biochem. Physiol. 107B: 39-44
  24. Takahashi M. and Hara Y. 1989. Control of diel vertical migration and cell division rhythm of Heterosigma akashiwo by day and night cycles. In: Red Tides, edited by Okaichi T, Anderson D.M. and Nemoto T. Elsevier, New York. pp. 265-268
  25. Tremblin G., Cannuel R., Mouget J.-L., Rech M. and Robert J.M. 2000. Change in light quality due to a blue-green pigment, mariennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum. J. Appl. Phycol. 12: 557-566 https://doi.org/10.1023/A:1026502713075
  26. Wallen D.G. and Geen G.H. 1971. Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Mar. Biol. 10: 34-43 https://doi.org/10.1007/BF02026764
  27. Watanabe M., Kohata K., Kimura T., Takamatsu T., Yamaguchi S. and Ioriya T. 1995. Generation of a Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnol. Oceanogr. 40: 1447-1460 https://doi.org/10.4319/lo.1995.40.8.1447
  28. Yamaguchi M. and Honjo T. 1989. Effects of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Gymnodinium nagasakiense (Dinophyceae). Nippon Suisan Gakkaishi 55: 2029-2036 (in Japanese with English abstract) https://doi.org/10.2331/suisan.55.2029
  29. Yamaguchi M., Imai I. and Honjo T. 1991. Effects of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Chattonella antiqua and C. marina (Raphidophyceae). Nippon Suisan Gakkaishi 57: 1277-1284 (in Japanese with English abstract) https://doi.org/10.2331/suisan.57.1277
  30. Yamamoto T. and Tarutani K. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jpn. J. Phycol. 45: 95-101 (in Japanese with English abstract)

Cited by

  1. Physiological and biochemical responses of Prorocentrum minimum to high light stress vol.44, pp.4, 2009, https://doi.org/10.1007/s12601-009-0018-z
  2. Consequences of the genotypic loss of mitochondrial Complex I in dinoflagellates and of phenotypic regulation of Complex I content in other photosynthetic organisms vol.68, pp.11, 2017, https://doi.org/10.1093/jxb/erx149
  3. Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009 vol.16, pp.3, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.3.151
  4. Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea vol.55, 2016, https://doi.org/10.1016/j.hal.2016.03.019
  5. Characteristics of the marine environment and algal blooms in Gamak Bay vol.75, pp.2, 2009, https://doi.org/10.1007/s12562-009-0056-6
  6. A hierarchy of conceptual models of red-tide generation: Nutrition, behavior, and biological interactions vol.47, 2015, https://doi.org/10.1016/j.hal.2015.06.004
  7. Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments vol.129, 2013, https://doi.org/10.1016/j.biortech.2012.11.078
  8. Formation and germination of temporary cysts of Cochlodinium polykrikoides Margalef (Dinophyceae) and their ecological role in dense blooms vol.66, 2017, https://doi.org/10.1016/j.hal.2017.05.002
  9. Diel variation in high-frequency acoustic backscatter from Cochlodinium polykrikoides vol.134, pp.2, 2013, https://doi.org/10.1121/1.4812437
  10. Effects of Water Temperature, Salinity and Irradiance on the Growth of Harmful Dinoflagellate Cochlodinium polykrikoides Margelef isolated from South Sea of Korea in 2008 vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.715
  11. Harmful dinoflagellate blooms caused by Cochlodinium sp.: Global expansion and ecological strategies facilitating bloom formation vol.14, 2012, https://doi.org/10.1016/j.hal.2011.10.015
  12. Effect of Monochromatic Light Emitting Diode on the Growth of Four Microalgae Species (Chlorella vulgaris, Nitzschia sp., Phaeodactylum vol.21, pp.1, 2015, https://doi.org/10.7837/kosomes.2015.21.1.001
  13. Optimal Growth Model of the Cochlodinium Polykrikoides vol.26, pp.4, 2014, https://doi.org/10.9765/KSCOE.2014.26.4.217
  14. Factors controlling the origin of Cochlodinium polykrikoides blooms along the Goheung coast, South Korea vol.113, pp.1-2, 2016, https://doi.org/10.1016/j.marpolbul.2016.09.001
  15. Phytoremediation by benthic microalgae (BMA) and light emitting diode (LED) in eutrophic coastal sediments vol.50, pp.1, 2015, https://doi.org/10.1007/s12601-015-0007-3
  16. Global parameter estimation of the Cochlodinium polykrikoides model using bioassay data vol.35, pp.2, 2016, https://doi.org/10.1007/s13131-016-0806-0
  17. Effects of Irradiance on the Growth of the Toxic Dinoflagellates Alexandrium tamarense and Alexandrium catenella vol.22, pp.12, 2013, https://doi.org/10.5322/JESI.2013.22.12.1571
  18. Characteristics of algal blooms in the southern coastal waters of Korea vol.65, pp.2, 2008, https://doi.org/10.1016/j.marenvres.2007.09.006
  19. Heat Shock Protein 70 and 90 Genes in the Harmful DinoflagellateCochlodinium polykrikoides: Genomic Structures and Transcriptional Responses to Environmental Stresses vol.2015, 2015, https://doi.org/10.1155/2015/484626
  20. The toxic dinoflagellate Cochlodinium polykrikoides (Dinophyceae) produces resting cysts vol.20, 2012, https://doi.org/10.1016/j.hal.2012.08.001
  21. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.28