DOI QR코드

DOI QR Code

Spray Breakup Characteristics of a Swirl Injector in High Pressure Environments

고압환경에서 스월 인젝터의 분무 및 분열특성

  • Published : 2006.07.31

Abstract

The spray and breakup characteristics of swirling liquid sheet were investigated by measuring the spray angle and breakup length as the axial Weber number Wel was increased up to 1554 and the ambient gas pressure up to 4.0MPa. As Wel and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces, and thus the liquid sheet disintegrated near from the injector exit. The measured spray angles according to the ambient gas density were different before and after the sheet breaks. Before the liquid sheet breaks, the spray angle was almost constant, but once the liquid sheet started to breakup, the spray angle decreased. And the breakup length decreased because of the increase of the aerodynamic force as the ambient gas density and Wel increased. Lastly, the measured breakup length according to the ambient gas density and Wel was compared with the result by the linear instability theory. We found that the corrected linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

분사조건과 주위기체 압력에 따라 스월 인젝터의 분무각과 분열길이를 측정함으로써, 스월 인젝터의 분무 및 분열특성에 대한 연구를 수행하였다. 분사조건으로 축방향 We 수(Wel)를 1554까지 주위기체 압력을 4.0MPa까지 증가시켰다. Wel과 주위기체 밀도(ρ)가 증가함에 따라 공기역학적 힘이 증가하여 원추형 액막 표면의 교란이 증가하게 되고, 따라서 분열이 빨리 일어난다. 결과에 따르면 주위기체 밀도에 따른 분무각의 변화가 분열이 일어나기 전과 후가 다르게 나타났다. 분열이전에는 분무각이 주위기체 밀도 변화에 관계없이 거의 일정하였으나, 분열이 일어나게 되면 분무각이 감소하게 된다. 또한 측정된 분열길이를 선형불안정이론과 비교해 보았는데, 액막두께의 감쇠를 고려한 수정된 이론이 측정결과와 상당히 유사한 결과를 얻을 수 있었다.

Keywords

References

  1. Lefevbre, AW., 'Atomization and Sprays', Hemisphere Publishing Corparation, 1989
  2. Taylor, G.I, 'The Boundary Layer in the Converging Nozzle of a Swirl Atomizer', Quarterly Journal of Mechanics and Applied Methematics, Vol. 3, Pt. 2, 1950, pp. 129-139 https://doi.org/10.1093/qjmam/3.2.129
  3. Bayvel, L. and Orzechowski, Z., 'Liquid Atomization', Taylor & Francis, 1993
  4. Rizk, N.K. and Lefebvre, A.H., 'Internal Flow Characteristics of Simplex Swirl Atomizer', J. Propulsion and Power, Vol. 1, No.3, 1985, pp. 193-199 https://doi.org/10.2514/3.22780
  5. De Corso, S.M. and Kemeny, G.A., 'Effect of Ambient and Fuel Pressure on Nozzle Spray Angle', ASME Transactions, Vol. 79, No.3, 1957, pp. 607-615
  6. Wang, X.F. and Lefevbre, A.H., 'Influence of Ambient Air Pressure on Pressure-swirl Atmomization', Atomisation and Spray Technology, Vol. 3, pp. 209-226, 1987
  7. Borodin, V.A, Dityakin, Y.F., Klyachko, L.A and Tagodkin, V.I., 'Atomization of Liquids', Air Force Foreign Technology Division Report, FTD-MT-24-97-68(AD685151), 1968
  8. Horvay, M. and Leuckel, W., 'Experimental and Theoretical Investigation of Swirl Nozzles for Pressure-jet Atomization', German Chemical Engineering, Vol. 9, 1986, pp. 276-283
  9. Squire, H.B., 'Investigatin of the Instability of a Moving Liquid Film', British Journal of Applied Physics, Vol. 4, 1953, pp. 167-169 https://doi.org/10.1088/0508-3443/4/6/302
  10. Dombrowski, N. and Hooper, P.C., 'The effect of Ambient Density on Drop Formation in Sprays', Chemical Engineering Science, Vol. 17, 1962, pp. 291-305 https://doi.org/10.1016/0009-2509(62)85008-8
  11. Hagerty, W.W. and Shea, J.F., 'A Study of the Stability of Plane Fluid Sheets', Journal of Applied Mechanics, 1955, pp. 509-514

Cited by

  1. Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer vol.34, pp.9, 2010, https://doi.org/10.3795/KSME-B.2010.34.9.817