References
- Angeles M., Bayon P., Alcaide J.M., Polo M.C. and Pueyo E. 2007. Angiotensin I - converting enzyme inhibitory compounds in white and red wines. Food Chem. 100: 43-47 https://doi.org/10.1016/j.foodchem.2005.09.007
- Athukorala Y. and Jeon Y.-J. 2005. Screening for Angiotensin 1-Converting Enzyme Inhibitory Activity of Ecklonia cava. J. Food Sci. and Nutr. 10: 134-139 https://doi.org/10.3746/jfn.2005.10.2.134
- Atkinson A.B. and Rovertson J. 1979. Captopril in the treatment of clinical hypertension and cardiac failure. Lanc. 2: 836-839
- Cha S.H., Ahn G.N., Heo S.J., Kim K.N., Lee K.W., Song C.B., Cho S.K. and Jeon Y.J. 2006. Screening of extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin - I Converting Enzyme (ACE) Inhibitory Activity. J. Korean Soc. Food Sci. Nutr. 35: 307-314 https://doi.org/10.3746/jkfn.2006.35.3.307
- Curtiss C., Chon J.N., Vrobel T. and Francious J.A. 1978. Role of the rennin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure. Circulation 58: 763-770 https://doi.org/10.1161/01.CIR.58.5.763
- Cushman D.W. and Cheung H.S. 1971. Spectrophotometric assay and properties of the angiotensin-conveting enzyme of rabbit lung. Biochemical Pharmacology 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
- Dzau V.J. 2001. Tissue Angiotensin and Pathobiology of Vascular Disease: A Unifying Hypothesis. Hypertension 37:1047-1052 https://doi.org/10.1161/01.HYP.37.4.1047
- Fujita H and Yokoyama M. 2000. Classification and antihypertensive activity of angiotensin I - converting enzyme inhibitory peptide derived from food proteins. J. Food Sci. 65: 564-569 https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
- Ikeda K., Kitamura A., Machida H., Watanabe M., Negishi H., Hiraoka J. and Nakano T. 2003. Effect of Undaria pinnatifida (WAKAME) on the development of cerebrovascular disease in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharm. and physic. 30: 44-48 https://doi.org/10.1046/j.1440-1681.2003.03786.x
- Je J.Y., Park P.J., Byun H.G., Jung W.K. and Kim S.K. 2005. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bior. Tech. 96: 1624-1629 https://doi.org/10.1016/j.biortech.2005.01.001
- Joshipura K.J., Hu F.B. and Manson J.E. 2001. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 134: 1106-1114 https://doi.org/10.7326/0003-4819-134-12-200106190-00010
- Jung W.K., Je J.Y., Park P.J., Son B.W., Kim H.C., Choi Y.K. and Kim S.K. 2004. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Che. 94: 26-32
- Kato H. and Susuki T. 1971. Bradykinin-potentiatinf peptides from venom of Agkistrodon- halys blomhoffii: Isolation of five bradykinin potentiators B and C. Bioche. 10: 972-980 https://doi.org/10.1021/bi00782a007
- Kim D.-S., Park D.-C. and Do J.-R. 2002. Angiotensin I converting enzyme inhibitory activity of Krill (Euphausia superba) Hydrolysate. Fisheries Sci. and tech. 5: 21-27 https://doi.org/10.5657/fas.2002.5.1.021
- Kunio S. and Takahisa N. 2000. Identification of an antihypertensive peptide from peptic digest of Wakame (Undaria pin-natifida). J. Nutr. Biochem. 11: 450-456 https://doi.org/10.1016/S0955-2863(00)00110-8
- Kunio S., Keisei M. and Chen J.R. 2004. Antihypertensive effects of Undaria pinnatifida (Wakame) peptide on blood pressure in spontaneously hypertensive rats. J. Nutr. Biochem. 15:267-272 https://doi.org/10.1016/j.jnutbio.2003.11.004
- Lee T.G, Yeum D.M. and Kim S.B. 2002. Characteristics of angiotensin converting enzyme inhibitory peptides from thermolysin hydrolysate of manila clam, Ruditapes philippinarum proteins. J. of Korean Fish. Soc. 35: 529-533 https://doi.org/10.5657/kfas.2002.35.5.529
- Liu J.C., Hsu F.L., Tsai J.C., Chan P., Liu J.Y., Thomas G.N., Tomlinson B., Lo M.Y. and Lin J.Y. 2003. Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci. 73: 1543-1555 https://doi.org/10.1016/S0024-3205(03)00481-8
-
Maruyama S., Mitachi H., Awaya J., Kurono M., Tomizuka N. and Suzuki H. 1989. Angiotensin I - converting enzyme inhibitory activity of the C-terminal hexapeptide of
$\alpha$ s1-casein. Agri. and Biol. Chem. 53: 2107-2114 https://doi.org/10.1271/bbb1961.53.2107 -
Miyoshi S., Ishikawa H., Kaneko T., Fukui F., Tanaka H. and Maruyama S. 1991. Structure and activity of angiotensinconverting enzyme inhibitors in an
$\alpha$ -zein hydrolysate. Agr. and Biol. Chem. 55: 1313-1318 https://doi.org/10.1271/bbb1961.55.1313 - Mustafa M.G. and Nakagawa H. 1995. A review: Dietary benefits of algae as an additive in fish feed. The Isreali J. of Aqua. 47: 155-162
- Mustafa M.G., Wakamatsu S., Takeda T.A., Umino T. and Nakagawa H. 1995. Effects of algae meal as feed additive on growth, feed efficiency, and body composition in Red Sea Bream. Fish. Sci. 61: 25-28 https://doi.org/10.2331/fishsci.61.25
- Nakano T., Hidaka H., Ucjida J., Nakajima K. and Hata Y. 1998. Hypetensive effects of wakame. J. Jpn. Soc. Clin. Nutr. 20:92
- Ondetti M.A. 1977. Desine of specific inhibitors of angiotensincoverting enzyme: New ckass of orally active antihypetensive agents. Sci. 196: 441-444 https://doi.org/10.1126/science.191908
- Ondetti M.A., Rubin B. and Cushman D.W. 1982. Enzyme of the rennin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51: 283-308 https://doi.org/10.1146/annurev.bi.51.070182.001435
- Rencland R. and Lithell H. 1994. Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand. J. Clin. Lab. Invest. 54: 105-111 https://doi.org/10.3109/00365519409086516
- Sato M., Hoskawa T., Yamagichi T., Nakano T., Muramoto K. and Kahara T. 2002. Angiotensin I-converting enzyme inhibitory peptides derived from Wakame (Undaria pinnatifida) and their antihypertensive effect in spontaneously hypertensive rats. J of Agri. and Food Chem. 50: 6245-6252 https://doi.org/10.1021/jf020482t
- Sawayama T, Itokawa A., Shumada K., Doi Y., Kimura K. and Nishimura H. 1990. Synthesis of 1-[(s)-acetylthio-2-methylpropanoyl]-L-propyl-L-phenylanine (Alacepril) and one of its active metabolites, the desacetyl derivation (DU-1227). Chem. Pharm. Bull. 38: 529-531 https://doi.org/10.1248/cpb.38.529
- Seppo L., Jauhiainen T., Poussa T. and Korpela R. 2003. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. American J. of Clin. Nutr. 77: 326-330 https://doi.org/10.1093/ajcn/77.2.326
- Shin Z.-I., Yu R., Park S.-A., Chung D.-K., Nam S.-H. and Kim K.-S. 2001. His-His-Leu, an angiotensin I-converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. of Agr. and Food Chem. 49: 3004-3009 https://doi.org/10.1021/jf001135r
- Ukeda H., Matsuda H., Kuroda H., Osajima K., Matsufuji H. and Osajima Y. 1991. Preparation and separation of angiotensin I converting enzyme inhibitory peptides. Nippon Noge. Kai. 65: 1223-1228 https://doi.org/10.1271/nogeikagaku1924.65.1223
Cited by
- Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata vol.107, 2017, https://doi.org/10.1016/j.fct.2017.04.001
- Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits vol.36, pp.6, 2010, https://doi.org/10.1002/biof.114
- Anti-obesity effects of seaweeds of Jeju Island on the differentiation of 3T3-L1 preadipocytes and obese mice fed a high-fat diet vol.90, 2016, https://doi.org/10.1016/j.fct.2016.01.023
- Antioxidants from macroalgae: potential applications in human health and nutrition vol.25, pp.4, 2010, https://doi.org/10.4490/algae.2010.25.4.155
- A review of antihypertensive and antioxidant activities in macroalgae vol.53, pp.5, 2010, https://doi.org/10.1515/bot.2010.044
- Seasonal Variation in Community Structure of Subtidal Seaweeds in Jeju Island, Korea vol.46, pp.5, 2013, https://doi.org/10.5657/KFAS.2013.0607
- Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods vol.13, pp.11, 2015, https://doi.org/10.3390/md13116838
- The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties vol.134, pp.4, 2012, https://doi.org/10.1016/j.foodchem.2012.04.105
- Biological Properties of Fucoxanthin in Oil Recovered from Two Brown Seaweeds Using Supercritical CO2 Extraction vol.13, pp.6, 2015, https://doi.org/10.3390/md13063422
- Potential pharmacological applications of polyphenolic derivatives from marine brown algae vol.32, pp.3, 2011, https://doi.org/10.1016/j.etap.2011.09.004
- Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry vol.8, pp.4, 2010, https://doi.org/10.3390/md8041080
- Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata vol.14, pp.2, 2016, https://doi.org/10.3390/md14020032
- Screening of Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from Caulerpa lentillifera vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23113005
- Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders vol.16, pp.8, 2018, https://doi.org/10.3390/md16080250