DOI QR코드

DOI QR Code

Prediction of Non-linear Behavior of Flexible Matrix Composites

유연수지를 기지재료로 하는 복합재료의 비선형거동 예측

  • Published : 2006.10.31

Abstract

In this paper, mechanical behavior of unidirectional composites with flexible matrix was predicted by geometrical non-linear finite element analysis. Two typical idealized unit cells of square and hexagonal fiber arrays were modeled and these were subjected to different loadings. The stress-strain behavior of composites was predicted from which the effective properties were calculated. The hyperelasticity of polyurethane matrix was considered using Mooney-Rivlin model. In result, the stress-strain behavior of flexible composites shows non-linearity, especially it is remarkable under transverse normal and shear loading conditions. In this cases, there are great difference between square and hexagonal fiber array models.

본 논문에서는 유연수지 복합재료에 대하여 기하학적 비선형해석을 수행하였다. 실제 랜덤한 섬유배열을 사각배열과 육각배열로 가정하고 각각에 대해 단위구조를 정의하였다. 다양한 하중상태를 수치적으로 모사하여 단위구조해석을 통해 전체 구조물의 응력-변형률 선도를 예측하였고 이로부터 등가물성치를 계산하였다. 해석시 유연수지의 초탄성 성질을 정의하기 위해 Mooney-Rivlin모델을 사용하였다. 계산결과, 유연수지 복합재료 구조물은 변형률 증가에 따라 비선형의 응력-변형률 관계를 보였다. 비선형성은 횡방향 하중 상태에서 더욱 두드러지게 나타났으며, 이 경우 복합재 단면의 섬유배열 형태에 따라 상당한 차이를 보여주었다.

Keywords

References

  1. 김동민, 강왕구, 이진우, 염찬홍, '비행선용막구조 설계 기법 연구', 한국복합재료학회 2002년도 추계학술대회 논문집, 한국복합재료학회, pp. 87-90, 2002
  2. Cadogan, D., Stein, J. and Crahne, M. 'Inflatable Composite Habitat Structures for Lunar and Mars Exploration', Acta Astronautica, Vol. 4, 1999, pp. 399-406
  3. Sandy, C. 'Next Generation Space Telescope Inflatable Sunshield Development', 2000 IEEE Aerospace Conference. March, 2000
  4. Hashin, Z., 'Analysis of Composite Materials-A Survey', Journal of Applied Mechanics, Vol. 50, 1983, pp. 481-505 https://doi.org/10.1115/1.3167081
  5. Whitney, J. M. and Riley, M. B., 'Elastic Properties of Fiber Reinforced Composite Materials', AIAA Journal, Vol. 4, No.9, 1996, pp. 1537-1542
  6. Chamis, C. C, 'Simplified Composite Micromechanics Equations for Hygral, Thermal and Mechanical Properties', SAMPE Quarterly, Vol. 15, No.3, Apr. 1984, pp. 14-23
  7. Chamis, C. C, 'Mechanics of Composite Materials: Past, Present, and Future', Journal of Composite Technology & Research, JCTRER, Vol. 11, No.1, 1989, pp. 3-14 https://doi.org/10.1520/CTR10143J
  8. Caruso, J. J. & Chamis, C. C. 'Assessment of Simplified Composite Micromechanics Using Three-Dimensional Finite Element Analysis', Journal of Composite Technology & Research, Vol. 8, 1986, pp. 77-83 https://doi.org/10.1520/CTR10326J
  9. Aboudi, J., 'Micromechanical Analysis of Composites by the Method of Cells', Applied Mechanics Reviews, Vol. 42, No.7, 1989, pp. 193-221 https://doi.org/10.1115/1.3152428
  10. ABAQUS Analysis User's Manual, Version 6.4
  11. Huang, X. M., Ramakrishna, S., Dinner, H. P. and Tay, A. A. O., 'Characterization of A Knitted Fabric Reinforced Elastomer Composite', Journal of Reinforced Plastics and Composites, Vol. 18, No.2, 1999, pp. 118-137 https://doi.org/10.1177/073168449901800202