Empirical modeling and statistical analysis of the adsorption of reactive dye on nylon fibers

나일론섬유에 대한 반응성 염료 흡착의 실험적 모델링 및 통계적 분석

  • Kim, Byung-Soon (BK21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Ravikumar, K. (BK21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Son, Young-A (BK21 FTIT, Department of Organic Materials and Textile System Engineering, Chungnam National University)
  • 김병순 (충남대학교 바이오응용화학부, BK21 FTIT 유기소재.섬유시스템) ;
  • ;
  • 손영아 (충남대학교 바이오응용화학부, BK21 FTIT 유기소재.섬유시스템)
  • Published : 2006.08.27

Abstract

A phthalocyanine reactive dye was applied to nylon fibers to study the effects of the temperature and pH on % exhaustion and fixation. In addition, appropriate predictable empirical models, relatively new approaches in dyeing process, were developed incorporating interactions effects of temperature and pH for predicting the both % exhaustion and fixation. The significance of the mathematical model developed was ascertained using Excel regression (solver) analysis module. A very high correlation coefficient was obtained ($R^2=0.9895$ for % exhaustion, $R^2=0.9932$ for fixation) for the model which shows prominent prediction capacity of the model for the unknown conditions. The predictable polynomial equations developed from the Experimental results were thoroughly analyzed by ANOVA (Analysis of Variance) statistical concepts.

나일론섬유에 대한 프탈로시아닌 반응성 염료의 염착거동을 관찰하기 위하여 온도 및 pH를 변화하여 이에 관한 흡착율(%) 및 고착율(%)의 변화를 관찰하였다. 또한, 염착실험과정과 관련하여 새로운 적용 방법으로 실험적 모델링 방법을 도입하여 흡착율(%) 및 고착율(%)을 예측하고, 이의 결과를 여러 온도 및 pH 조건에서의 실제실험과의 상호작용 및 효과를 확인하였다. 수학적 모델링의 타당성은 Excel 회귀분석단위를 이용하여 확인하였다. 예측 모델에 있어서 얻어진 높은 계수간의 상관관계(흡착율(%) $R^2=0.9895$, 고착율(%) $R^2=0.9932$)는 실제로 진행되지 않은 실험조건에 대한 결과에 있어서도 우수한 예측 정보를 제공할 수 있다. 그리고 실험적 결과로부터 확립된 예측가능한 다항식이 ANOVA 통계적 개념에 의해 자세하게 분석되었다.

Keywords

References

  1. Neal R. Armstrong, J. Porphyrins and Phthalocyanines, 4, 414-417(2000) https://doi.org/10.1002/(SICI)1099-1409(200006/07)4:4<414::AID-JPP247>3.0.CO;2-B
  2. S. M. Burkinshaw, Young-A Son, The aftertreatment of acid dyes on nylon 6,6 fibers Part 1. 1:2 pre-metallised acid dyes, Dyes and Pigments, 48, 57-69(2001) https://doi.org/10.1016/S0143-7208(00)00077-2
  3. Li-yan Fu, Xiang-hua Wen, Li-jie Xu, Yi Qian, Removal of a copper-phthalocyanine dye from wastewater by acclimated sludge under anaerobic or aerobic conditions, Process Biochemistry 37, 1151-1156(2002) https://doi.org/10.1016/S0032-9592(01)00334-X
  4. D. M. Lewis, Y. C. Ho, Improved fixation of dyes on polyamide fibres-IV. The use of a nucleophilic aminoethylsulphonyl cationic dye for dyeing nylon followed by a fixation aftertreatment with 2-chloro-4,6-di(aminobenzene-4′-sulphatoethylsulphone)-s-triazine [XLC], Dyes and Pigments, 31, 111-129(1996) https://doi.org/10.1016/0143-7208(95)00099-2
  5. S. M. Burkinshaw, A. E. Wills, Dyes and pigments, 34, 243-253(1997) https://doi.org/10.1016/S0143-7208(96)00074-5
  6. S. M. Burkinshaw, S. N. Chevil, D. J. Marfell, Printing of nylon 6,6 with reactive dyes part I: preliminary studies, Dyes and pigments, 45, 235-242(2000) https://doi.org/10.1016/S0143-7208(00)00022-X
  7. S. M. Burkinshaw, K. Gandhi, The dyeing of conventional and microfibre nylon 6,6 with reactive dyes. Part 2. $\alpha$-bromoacrylamido dyes, Dyes and Pigments, 33, 259-280(1997) https://doi.org/10.1016/S0143-7208(96)00056-3
  8. E. Mordecai, 'Methods of correlation analysis, 3rd ed.', John Wiley & Sons Inc, New York, pp.21-30, 1951
  9. H. R. Mickly, T. K. Sherwood, C. E. Reed, 'Applied Mathematics in Chemical Engineering, 2nd ed.', TataMcGraw-Hill, New Delhi, 1975
  10. D. C. Montgomery, 'Design and Analysis of Experiments, 3rd ed.', Wiley, New York, 1991