The Effects of Storage of Human Saliva on DNA Isolation and Stability

인체타액의 보관이 DNA 분리와 안정도에 미치는 영향

  • Kim, Yong-Woo (Dept. of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University) ;
  • Kim, Young-Ku (Dept. of Oral Medicine and Oral Diagnosis, School of Dentistry, Seoul National University)
  • 김용우 (서울대학교 치과대학 구강내과진단학 교실) ;
  • 김영구 (서울대학교 치과대학 구강내과진단학 교실)
  • Published : 2006.03.30

Abstract

The most important progress in diagnostic sciences is the increased sensitivity and specificity in diagnostic procedures due to the development of micromethodologies and increasing availability of immunological and molecular biological reagents. The technological advances led to consider the diagnostic use of saliva for an array of analytes and DNA source. The purpose of the present study was to compare DNA from saliva with those from blood and buccal swab, to evaluate diagnostic and forensic application of saliva, to investigate the changes of genomic DNA in saliva according to the storage temperature and period of saliva samples, and to evaluate the integrity of the DNA from saliva stored under various storage conditions by PCR analysis. Peripheral venous blood, unstimulated whole saliva, stimulated whole saliva, and buccal swab were obtained from healthy 10 subjects (mean age: $29.9{\pm}9.8$ years) and genomic DNA was extracted using commercial kit. For the study of effects of various storage conditions on genomic DNA from saliva, stimulated whole saliva were obtained from healthy 20 subjects (mean age: $32.3{\pm}6.6$ years). After making aliquots from fresh saliva, they were stored at room temperature, $4^{\circ}C$, $-20^{\circ}C$, and $-70^{\circ}C$. Saliva samples after lyophilization and dry-out procedure were stored at room temperature. After 1, 3, and 5 months, the same experiment was performed to investigate the changes in genomic DNA in saliva samples. In case of saliva aliquots stored at room temperature and dry-out samples, the results in 2 weeks were also included. Integrity of DNA from saliva stored under various storage conditions was also evaluated by PCR amplification analysis of $\beta$-globin gene fragments (989-bp). The results were as follows: 1. Concentration of genomic DNA extracted from saliva was lower than that from blood (p<0.05), but there were no significant differences among various types of saliva samples. Purities of genomic DNA extracted from stimulated whole saliva and lyophilized one were significantly higher than that from blood (p<0.05). Purity of genomic DNA extracted from buccal swab was lower than those from various types of saliva samples (p<0.05). 2. Concentration of genomic DNA from saliva stored at room temperature showed gradual reduction after 1 month, and decreased significantly in 3 and 5 months (p<0.05, p<0.01, respectively). Purities of DNA from saliva stored for 3 and 5 months showed significant differences with those of fresh saliva and stored saliva for 1 month (p<0.05). 3. In the case of saliva stored at $4^{\circ}C$ and $-20^{\circ}C$, there were no significant changes of concentration of genomic DNA in 3 months. Concentration of DNA decreased significantly in 5 months (p<0.05). 4. There were no significant differences of concentration of genomic DNA from saliva stored at $-70^{\circ}C$ and from lyophilized one according to storage period. Concentration of DNA showed decreasing tendency in 5 months. 5. Concentration of genomic DNA immediately extracted from saliva dried on Petri dish were 60% compared with that of fresh saliva. Concentration of DNA from saliva stored at room temperature after dry-out showed rapid reduction within 2 weeks (p<0.05). 6. Amplification of $\beta$-globin gene using PCR was successful in all lyophilized saliva stored for 5 months. At the time of 1 month, $\beta$-globin gene was successfully amplified in all saliva samples stored at $-20^{\circ}C$ and $-70^{\circ}C$, and in some saliva samples stored at $4^{\circ}C$. $\beta$-globin gene was failed to amplify in saliva stored at room temperature and dry-out saliva.

최근 진단분야에 있어서의 가장 획기적인 진보로는 향상된 진단 술식의 민감도와 특이도를 들 수 있으며 이는 다양한 면역 화학물질과 분자생물학적 시약의 활용도가 증가되고 이와 더불어 진단용 기구의 수준 향상으로 가능해진 미세 술식의 발달에 따른 결과이다. 이러한 기술의 발전은 임상검사용 검체 뿐만 아니라 DNA의 공급원으로서의 타액의 진단학적 가치를 고려하게 되었다. 본 연구는 인체의 타액에서 genomic DNA를 분리하고 이를 혈액 및 협점막 swab에서 분리한 genomic DNA와 비교 검토해 봄으로써 타액 검체의 진단학적 활용도를 살펴보고, 타액 검체의 다양한 보관 과정이 genomic DNA의 분리에 미치는 영향을 살펴보고자 시행되었으며, 또한 분리된 genomic DNA의 안정도를 살펴보고자 중합효소 연쇄반응 분석법을 이용하여 $\beta$-globin 유전자의 증폭을 시행하였다. 10명의 피검자(평균 나이: $29.9{\pm}9.8$ 세)를 대상으로 혈액, 비자극성, 자극성 전타액 및 협점막 swab을 채취한 후 이로부터 genomic DNA를 분리하였다. 여러 다양한 보관조건이 genomic DNA에 미치는 영향을 알아보기 위하여 건강한 20명의 피검자(평균 나이: $32.3{\pm}6.6$ 세)를 대상으로 자극성 전타액을 채취하여 실온, $4^{\circ}C$, $-20^{\circ}C$, $-70^{\circ}C$, 자연 건조 및 동결 건조 상태에서 1, 3, 5 개월 동안 보관한 후 genomic DNA를 분리, 조사하였으며, 분리된 genomic DNA의 안정도를 살펴보고자 중합효소 연쇄반응 분석법을 이용하여 989-bp의 $\beta$-globin 유전자를 증폭한 후 전기영동 검사를 시행하여 다음과 같은 결론을 얻었다. 1. 타액으로부터 분리한 genomic DNA의 농도는 혈액의 경우에 비하여 유의하게 낮았으며(p<0.05), 타액군 간에는 유의한 차이가 없었다. 자극성 전타액과 이를 동결 건조한 검체에서 분리한 genomic DNA의 순도는 혈액의 경우에 비하여 유의하게 높았으며(p<0.05), 협점막 swab으로부터 분리한 genomic DNA 의 순도는 타액의 경우에 비하여 유의하게 낮게 나타났다(p<0.05). 2. 실온에서 보관한 타액 검체로부터 분리한 genomic DNA의 농도는 1 개월 후부터 점차적으로 감소되었으며, 3 개월과 5개월 동안 보관한 타액 검체에서는 유의하게 감소되었다(각각 p<0.05, p<0.01). DNA의 순도 또한 점차적으로 감소되어 3 개월과 5 개월 동안 보관한 타액 DNA의 순도는 신선한 타액과 1 개월 동안 보관된 타액 검체의 순도보다 낮게 나타났다(p<0.05). 3. 타액 검체를 $4^{\circ}C$$-20^{\circ}C$에서 보관한 후 분리한 genomic DNA의 농도는 3 개월의 보관 기간 동안 유의한 변화가 없었으나, 보관 기간 5 개월 후의 검체에서는 유의하게 감소되었다(p<0.05). 4. 타액을 $-70^{\circ}C$에서 보관한 검체와 동결 건조한 후 보관한 검체로부터 분리한 genomic DNA의 농도는 보관 기간에 따른 유의한 차이를 보이지 않았으나, 보관 후 5 개월 후의 검체에서는 DNA의 농도가 감소되는 경향을 보였다. 5. 타액을 자연 건조한 후 즉시 genomic DNA를 분리한 결과, 신선한 타액에 비하여 약 60%의 DNA를 얻을 수 있었다. 자연 건조한 후에 실온에서 보관한 타액 검체로부터 분리한 genomic DNA 농도는 보관 2 주 만에 급격하게 감소되었다(p<0.05). 6. 중합효소 연쇄반응 방법을 이용한 $\beta$-globin 유전자의 증폭은 동결 건조한 후 보관한 타액의 경우 보관 기간 5 개월까지의 모든 검체에서 가능하였으며, 보관 기간 1 개월을 기준으로 보았을 때 $-20^{\circ}C$$-70^{\circ}C$에서 보관한 타액의 경우 모든 검체에서, $4^{\circ}C$에서 보관한 타액의 경우 일부분의 검체에서만 증폭이 가능하였고, 실온에서 보관한 타액과 자연 건조 후 실온에서 보관한 타액의 경우는 증폭이 이루어지지 않았다.

Keywords

References

  1. Slavkin HC. Understanding human genetics. J Am Dent Assoc 1996;27:266-267
  2. Fredricks DN, Relman DA. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin Infect Dis 1999;29(3):475-488 https://doi.org/10.1086/598618
  3. Elnifro EM, Ashshi AM, Cooper RJ, Klapper PE. Multiplex PCR: optimization and application in diagnostic virology. Clin Microbiol Rev 2000;13(4):559-570 https://doi.org/10.1128/CMR.13.4.559-570.2000
  4. Nissen MD, Sloots TP. Rapid diagnosis in pediatric infectious diseases: the past, the present and the future. Pediatr Infect Dis J 2002;21(6):605-612 https://doi.org/10.1097/00006454-200201000-00002
  5. Weedn VW. Forensic DNA tests. Clin Lab Med 1996;16(1):187-196
  6. Offit K, Gilewski T, McGuire P, Schluger A, Hampel H, Brown K, Swensen J, Neuhausen S, Skolnick M, Norton L, Goldgar D. Germline BRCA1 185delAG mutations in Jewish women with breast cancer. Lancet 1996;347:1643-1645 https://doi.org/10.1016/S0140-6736(96)91546-9
  7. Witt DR, Schaefer C, Hallam P, Wi S, Blumberg B, Fishbach A, Holtzman J, Kornfeld S, Lee R, Nemzer L, Palmer R. Cystic fibrosis heterozygote screening in 5161 pregnant women. Am J Hum Genet 1996;58:823-835
  8. Slavkin HC. Recombinant DNA technology and oral medicine. Ann N Y Acad Sci 1995;758:314-328 https://doi.org/10.1111/j.1749-6632.1995.tb24836.x
  9. Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, Wilson TG, Jr Higginbottom FL, Duff GW. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 1997;24:72-77 https://doi.org/10.1111/j.1600-051X.1997.tb01177.x
  10. Boyle JO, Mao L, Brennan JA, Koch WM, Eisele DW, Saunders JR, Sidransky D. Gene mutations in saliva as molecular markers for head and neck squamous cell carcinoma. Am J Surg 1994;168:429-432 https://doi.org/10.1016/S0002-9610(05)80092-3
  11. Gill P, Jeffreys AJ, Werret DJ. Forensic application of DNA 'finger printing'. Nature 1985;318:577-579 https://doi.org/10.1038/318577a0
  12. Kanter E, Baird M, Shaler R, Balazs I. Analysis of restriction fragment length polymorphisms in deoxyribonucleic acid (DNA) recovered from dried bloodstains. J Forensic Sci 1986;31(2):403-408 https://doi.org/10.1016/0379-0738(86)90065-4
  13. Giusti A, Baird M, Pasquale S, Balazs I, Glassberg J. Application of deoxyribonucleic acid (DNA) polymorphisms to the analysis of DNA recovered from sperm. J Forensic Sci 1986;31(2):409-417 https://doi.org/10.1016/0379-0738(86)90065-4
  14. Linch CA, Smith SL, Prahlow JA. Evaluation of the human hair root for DNA typing subsequent to microscopic comparison. J Forensic Sci 1998;43(2):305-314
  15. Lee HC, Ladd C, Scherczinger CA, Bourke MT. Forensic applications of DNA typing: part 2:collection and preservation of DNA evidence. Am J Forensic Med Pathol 1998;19(1):10-18 https://doi.org/10.1097/00000433-199803000-00001
  16. Lee JC, Chang JG. ABO genotyping by polymerase chain reaction. J Forensic Sci 1992;37(5):1269-1275
  17. Sensabaugh GF. Isozymes in forensic science. Isozymes Curr Top Biol Med Res 1982;6:247-282
  18. Sensabaugh GF. The utilization of polymorphic enzymes in forensic science. Isozymes Curr Top Biol Med Res 1983;11:137-154
  19. Mandel ID. The diagnostic uses of saliva. J Oral Pathol Med 1990;19:119-125 https://doi.org/10.1111/j.1600-0714.1990.tb00809.x
  20. van Schie RC, Wilson ME. Saliva: a convinient source of DNA for analysis of bi-allelic polymorphisms of Fc receptor IIA (CD32) and Fc receptor IIIB (CD16). J Immunol Methods 1997;208:91-101 https://doi.org/10.1016/S0022-1759(97)00115-4
  21. Walsh DJ, Corey AC, Cotton RW, Forman L, Herrin GL Jr, Word CJ, Garner DD. Isolation of deoxyribonucleic acid (DNA) from saliva and forensic science samples containing saliva. J Forensic Sci 1992;37:387-395
  22. Malamud D. Saliva as a diagnostic fluid. Br Med J 1992;305:207-208 https://doi.org/10.1136/bmj.305.6847.207
  23. Farkas DH, Drevon AM, Kiechle FL, DiCarlo RG, Heath EM, Crisan D. Specimen stability for DNA-based diagnostic testing. Diagn Mol Patho 1996;15(4):227-235
  24. Kan YW, Golbus MS, Dozy AM. Prenatal diagnosis of alpha-thalassemia. Clinical application of molecular hybridization. N Engl J Med 1976;295(21):1165-1167 https://doi.org/10.1056/NEJM197607012950101
  25. Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet 1993;31(7-8):321-328 https://doi.org/10.1007/BF02399815
  26. Madisen L, Hoar DI, Holroyd CD, Crisp M, Hodes ME. DNA banking: the effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet 1987;27(2):379-390 https://doi.org/10.1002/ajmg.1320270216
  27. Cushwa WT, Medrano JF. Effects of blood storage time and temperature on DNA yield and quality. Biotechniques 1993;14(2):204-207
  28. Albarino CG, Romanowski, V. Phenol extraction revisited: a rapid method for the isolation and preservation of human genomic DNA from whole blood. Mol Cell Probes 1994;8(5):423-427 https://doi.org/10.1006/mcpr.1994.1060
  29. DeSalle R, Gatesy J, Wheeler W, Grimaldi D. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 1992;257(5078):1933-1936 https://doi.org/10.1126/science.1411508
  30. Paabo S. Molecular cloning of Ancient Egyptian mummy DNA. Nature 1985;314(6012):644-645 https://doi.org/10.1038/314644a0
  31. Takahashi R, Matsuo S, Okuyama T, Sugiyama T. Degradation of macromolecules during preservation of lyophilized pathological tissues. Pathol Res Pract 1995;91(5):420-426
  32. Huckenbeck W, Bonte W. DNA fingerprinting of freeze-dried tissues. Int J Legal Med 1992;105(1):39-41 https://doi.org/10.1007/BF01371228
  33. Weisberg EP, Giorda R, Trucco M, Lampasona V. Lyophilization as a method to store samples of whole blood. Biotechniques 1993;15(1):64-68
  34. Hagerman RJ, Wilson P, Staley LW, Lang KA, Fan T, Uhlhorn C, Jewell-Smart S, Hull C, Drisko J, Flom K, Taylor AK. Evaluation of school children at high risk for fragile X syndrome utilizing buccal cell FMR-1 testing. Am J Med Genet 1994;51(4):474-481 https://doi.org/10.1002/ajmg.1320510102
  35. Meulenbelt I, Droog S, Trommelen GJ, Boomsma DI, Slagboom PE. High-yield noninvasive human genomic DNA isolation method for genetic studies in geographically dispersed families and populations. Am J Hum Genet 1995;57(5):1252-1254
  36. Freeman B, Powell J, Ball D, Hill L, Craig I, Plomin R. DNA by mail: an inexpensive and noninvasive method for collecting DNA samples from widely dispersed populations. Behav Genet 1997;27(3):251-257 https://doi.org/10.1023/A:1025655023496
  37. Walker AH, Najarian D, White DL, Jaffe JM, Kanetsky PA, Rebbeck TR. Collection of genomic DNA by buccal swabs for polymerase chain reaction-based biomarker assays. Environ Health Perspect 1999;107: 517-520 https://doi.org/10.1289/ehp.99107517