Structural Brain Abnormalities in Juvenile Myoclonic Epilepsy Patients: Volumetry and Voxel-Based Morphometry

  • Tae, Woo-Suk (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hong, Seung-Bong (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Joo, Eun-Yun (Department of Neurology, College of Medicine, Ewha Womans University) ;
  • Han, Sun-Jung (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, Jae-Wook (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Seo, Dae-Won (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jong-Min (Department of Biomedical Engineering, Hanyang University) ;
  • Kim, In-Young (Department of Biomedical Engineering, Hanyang University) ;
  • Byun, Hong-Sik (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Sun-I. (Department of Neurology, College of Medicine, Ewha Womans University)
  • Published : 2006.09.30

Abstract

Objective: We aimed to find structural brain abnormalities in juvenile myoclonic epilepsy (JME) patients. Materials and Methods: The volumes of the cerebrum, hippocampus and frontal lobe and the area of the corpus callosum's subdivisions were all semiautomatically measured, and then optimized voxel-based morphometry (VBM) was performed in 19 JME patients and 19 age/gender matched normal controls. Results: The rostrum and rostral body of the corpus callosum and the left hippocampus were significantly smaller than those of the normal controls, whereas the volume of the JME's left frontal lobe was significantly larger than that of the controls. The area of the rostral body had a significant positive correlation with the age of seizure onset (r=0.56, p=0.012), and the volume of the right frontal lobe had a significant negative correlation with the duration of disease (r=-0.51, p=0.025). On the VBM, the gray matter concentration of the prefrontal lobe (bilateral gyri rectus, anterior orbital gyri, left anterior middle frontal gyrus and right anterior superior frontal gyrus) was decreased in the JME group (corrected p<0.05). Conclusion: The JME patients showed complex structural abnormalities in the corpus callosum, frontal lobe and hippocampus, and also a decreased gray matter concentration of the prefrontal region, which all suggests there is an abnormal neural network in the JME brain.

Keywords

References

  1. Janz D, Durner M. Juvenile myoclonic epilepsy. In: Engel Jr, Pedley TA, eds. Epilepsy: A Comprehensive Textbook, Philadelphia: Lippincott-Raven, 1998:2389-2400
  2. Panayiotopoulos CP, Obeid T. Juvenile myoclonic epilepsy: an autosomal recessive disease. Ann Neurol 1989;25:440-443 https://doi.org/10.1002/ana.410250504
  3. Liu AW, Delgado-Escueta AV, Serratosa JM, Alonso ME, Medina MT, Gee MN, et al. Juvenile myoclonic epilepsy locus in chromosome 6p21.2-p11: linkage to convulsions and electroencephalography trait. Am J Hum Genet 1995;57:368-381
  4. Durner M, Sander T, Greenberg DA, Johnson K, Beck- Mannagetta G, Janz D. Localization of idiopathic generalized epilepsy on chromosome 6p in families of juvenile myoclonic epilepsy patients. Neurology 1991;41:1651-1655 https://doi.org/10.1212/WNL.41.10.1651
  5. Elmslie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 1997;6:1329-1334 https://doi.org/10.1093/hmg/6.8.1329
  6. Santiago-Rodriguez E, Harmony T, Fernandez-Bouzas A, Hernandez-Balderas A, Martinez-Lopez M, Graef A, et al. Source analysis of polyspike and wave complexes in juvenile myoclonic epilepsy. Seizure 2002;11:320-324 https://doi.org/10.1053/seiz.2002.0676
  7. Savic I, Lekvall A, Greitz D, Helms G. MR spectroscopy shows reduced frontal lobe concentration of N-acetyl aspartate in patients with juvenile myoclonic epilepsy. Epilepsia 2000;41:290-296 https://doi.org/10.1111/j.1528-1157.2000.tb00158.x
  8. Devinsky O, Gershengorn J, Brown E, Perrine K, Vazquez B, Luciano D. Frontal function in juvenile myoclonic epilepsy. Neuropsychiatry Neuropsychol Behav Neurol 1997;10:243-246
  9. Koepp MJ, Richardson MP, Brooks DJ, Cunningham VJ, Duncan JS. Central benzodiazepine/gamma-aminobutyric acid A receptors in idiopathic generalized epilepsy: an [11C]- flumazenil positron emission tomography study. Epilepsia 1997;38:1089-1097 https://doi.org/10.1111/j.1528-1157.1997.tb01198.x
  10. Swartz BE, Simpkins F, Halgren E, Mandelkern M, Brown C, Krisdakumtorn T, et al. Visual working memory in primary generalized epilepsy: an 18FDG-PET study. Neurology 1996;47:1203-1212 https://doi.org/10.1212/WNL.47.5.1203
  11. Gelisse P, Genton P, Samuelian JC, Thomas P, Bureau M. Psychiatric disorders in juvenile myoclonic epilepsy. Rev Neurol 2001;157:297-302
  12. Gelisse P, Genton P, Raybaud C, Thomas P, Dravet C. Structural brain lesions do not influence the prognosis of juvenile myoclonic epilepsy. Acta Neurol Scand 2000;102:188- 191 https://doi.org/10.1034/j.1600-0404.2000.102003188.x
  13. Woermann FG, Sisodiya SM, Free SL, Duncan JS. Quantitative MRI in patients with idiopathic generalized epilepsy. Evidence of widespread cerebral structural changes. Brain 1998;121:1661-1667 https://doi.org/10.1093/brain/121.9.1661
  14. Woermann FG, Free SL, Koepp MJ, Sisodiya SM, Duncan JS. Abnormal cerebral structure in juvenile myoclonic epilepsy demonstrated with voxel-based analysis of MRI. Brain 1999;122:2101-2108 https://doi.org/10.1093/brain/122.11.2101
  15. Woermann FG, Free SL, Koepp MJ, Ashburner J, Duncan JS. Voxel-by-voxel comparison of automatically segmented cerebral gray matter—A rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage 1999;10:373-384 https://doi.org/10.1006/nimg.1999.0481
  16. Jack CR Jr, Bentley MD, Twomey CK, Zinsmeister AR. MR imaging-based volume measurements of the hippocampalformation and anterior temporal lobe: validation studies. Radiology 1990;176:205-209 https://doi.org/10.1148/radiology.176.1.2353093
  17. Johannessen CU. Mechanisms of action of valproate: a commentatory. Neurochem Int 2000;37:103-110 https://doi.org/10.1016/S0197-0186(00)00013-9
  18. Chapman AG, Riley K, Evans MC, Meldrum BS. Acute effects of sodium valproate and gamma-vinyl GABA on regional amino acid metabolism in the rat brain: incorporation of 2- [14C]glucose into amino acids. Neurochem Res 1982;7:1089- 1105 https://doi.org/10.1007/BF00964888
  19. DeLong MR. The basal ganglia. In: Kandal ER, Schwartz JH, Jessell TM, eds. Principles of neural science, 4th ed. New York: McGraw-Hill, 2000:853-867
  20. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389-399 https://doi.org/10.1111/j.1528-1157.1989.tb05316.x
  21. Witelson FS. Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 1989;112:799-835 https://doi.org/10.1093/brain/112.3.799
  22. Duvernoy HM. The human brain: surface, three-dimensional sectional anatomy with MRI, and blood supply. New York: Springer-Verlag, 1991
  23. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 1997;120:14- 157
  24. Aylward EH, Anderson NB, Bylsma FW, Wagster MV, Barta PE, Sherr M, et al. Frontal lobe volume in patients with Huntington's disease. Neurology 1998;50:252-258 https://doi.org/10.1212/WNL.50.1.252
  25. Arndt S, Swayze V, Cizadlo T, O'Leary D, Cohen G, Yuh WT, et al. Evaluating and validating two methods for estimating brain structure volumes: tessellation and simple pixel counting. Neuroimage 1994;1:191-198 https://doi.org/10.1006/nimg.1994.1004
  26. Arndt S, Cohen G, Alliger RJ, Swayze VW 2nd, Andreasen NC. Problems with ratio and proportion measures of imaged cerebral structures. Psychiatry Res 1991;40:79-89 https://doi.org/10.1016/0165-1781(91)90147-H
  27. Pujol J, Vendrell P, Junque C, Marti-Vilalta JL, Capdevila A. When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 1993;34:71-75 https://doi.org/10.1002/ana.410340113
  28. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21-36 https://doi.org/10.1006/nimg.2001.0786
  29. Moses P, Courchesne E, Stiles J, Trauner D, Egaas B, Edwards E. Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cereb Cortex 2000;10:1200-1210 https://doi.org/10.1093/cercor/10.12.1200
  30. Pelletier J, Suchet L, Witjas T, Habib M, Guttmann CR, Salamon G, et al. A longitudinal study of callosal atrophy and interhemispheric dysfunction in relapsing-remitting multiple sclerosis. Arch Neurol 2001;58:105-111 https://doi.org/10.1001/archneur.58.1.105
  31. Hampel H, Teipel SJ, Alexander GE, Horwitz B, Teichberg D, Schapiro MB, et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch Neurol 1998;55:193-198 https://doi.org/10.1001/archneur.55.2.193
  32. Teipel SJ, Hampel H, Pietrini P, Alexander GE, Horwitz B, Daley E, et al. Region-specific corpus callosum atrophy correlates with the regional pattern of cortical glucose metabolism in Alzheimer disease. Arch Neurol 1999;56:467-473 https://doi.org/10.1001/archneur.56.4.467
  33. Meschaks A, Lindstrom P, Halldin C, Farde L, Savic I. Regional reductions in serotonin 1A receptor binding in juvenile myoclonic epilepsy. Arch Neurol 2005;62:946-950 https://doi.org/10.1001/archneur.62.6.946
  34. Ballmaier M, Toga AW, Blanton RE, Sowell ER, Lavretsky H, Peterson J, et al. Anterior cingulate, gyrus rectus, and orbitofrontal abnormalities in elderly depressed patients: an MRI-based parcellation of the prefrontal cortex. Am J Psychiatry 2004;161:99-108
  35. Allen JS, Bruss J, Brown CK, Damasio H. Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol Aging 2005;26:1271-1274 https://doi.org/10.1016/j.neurobiolaging.2005.05.016
  36. Tisserand DJ, Pruessner JC, Sanz Arigita EJ, van Boxtel MP, Evans AC, Jolles J, et al. Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. Neuroimage 2002;17:657-669 https://doi.org/10.1016/S1053-8119(02)91173-0