
A Numerical Study on Dispersion of Inert Particles in a Rough Single 

Fracture

거친 균열 암반에서의 용질 입자 확산에 대한 수치적 연구

정우창
*1)

 

Jeong, Woochang*

Abstract

��This paper presents the numerical model developed to simulate the solute transport in rough and smooth single 
fractures. The roughness of these fractures is represented by using the fractal surface method. In this study, the 3D 
transport model, which is based on the random walk technique, is used to simulate the dispersion process of a solute 
which is represented by numerical particles. As the simulation results, it can be observed that the dispersion of solute in 
the fracture is significantly affected by the fracture roughness and particle size.
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요    지

  본 논문은 매끄럽거나 거친 단일 균열에서의 용질 이동을 모의하기 위해 개발된 수치모형을 통해 용질 입자의 확산에 수치적 

연구를 수행한 것이다. 단일 균열의 조도는 프랙탈 방법을 통해 표현되었으며, 본 연구에서 사용된 3차원 이동 모형은 random 

walk 기법에 근거하여 개발하였다. 모의실험 결과 단일 균열내에서의 용질 입자의 확산은 균열의 조도와 입자의 크기에 큰 영향

을 받는 것으로 나타났다.

주요어 : 용질 이동, random walk 모형, 균열 조도
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1. Introduction

  We consider in this paper the different cases of the 

conservative and non-conservative solute transport in 

a smooth or rough fracture (Fleurant, 2000). In the 

case of a single fracture, the solute transport can be 

treated to two-dimensional or three-dimensional 

problem (Neretnieks et al., 1982; Novakowski et al., 

1985). In two-dimensional problem, it can be supposed 

that the fluid flows with constant velocity, and in 

three-dimensional problem it is necessary to introduce 

a parabolic velocity profile on the section of the 

fracture (Figure 1). In a single fracture, the transport 

processes consist of the convection in the longitudinal 

direction and the molecular diffusion in the vertical 

direction. In general, this is called as Taylor 

dispersion (Kinzelbach, 1986).

Figure 1. Velocity profile in a single fracture: a) 3D case and b) 2D 

case.

  In a smooth fracture, when   is the length of 

the fracture and    is the mean velocity of the 

fluid, Hull et al. (1987) give several indications on 

the conditions of the transport by introducing the 

concept of Fickian process for the solute transport: if

the mean residence time is smaller than the critical

time 
 , where  

   is the molecular

diffusion and   is the aperture, the transport is 

thus non Fickian and this non Fickian transport is 

often argued to be results of heterogeneities that can 

be ignored. On the contrary case, when the molecular 

diffusion is dominant and makes a homogeneity of 

the concentration of a tracer in the aperture of the 

fracture, the transport is thus Fickian and is modeled 

by using the classical convection-dispersion equation. 

The coefficient of the longitudinal dispersion can be 

written as (Aris, 1956):

     

 
 (1)

  This coefficient of dispersion, which is called as 

Taylor-Aris coefficient, has a asymptotic value and 

is valuable only from the critical length of the 

fracture (Kessler and Hunt, 1994).

  In the case of three-dimensional transport, the 

local particle velocities can be determined with 

Poiseuille's velocity profile that the liquid in the 

center is moving fastest while the liquid touching the 

walls of the tube is stationary due to friction:

   



  (2)

  This profile represents that the velocity is zero at

the fracture walls and is maximum 

  at the

center of the fracture.

  If the residence time of particles is smaller than 

the critical time, it is necessary to be treated as a 

three-dimensional problem (that is the parabolic 

distribution of velocity must be considered). 

However, in the contrary case, it can be simplified to 

two-dimensional problem (that is, the Taylor-Aris 

dispersion is used).

2. Models

  2.1 Generation of rough single fracture

  In order to simulate the particle transport in a 

rough single fracture, first of all, it is necessary to 

generate the roughness of the fracture. The method 
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Figure 2. A rough fracture generated by two fractal surfaces (  = 2.5).

used for rough fractures in this study is the fractal 

surface theory and is written in detail in Brown 

(1995) and Jeong (2000).

  The procedure for the generation of a rough 

fracture is as follow: Firstly, two fractal surfaces 

with the same mean and standard deviation are 

generated and secondly, the aperture (the distance   

between two fractal surfaces in Figure 1) of this 

fracture is needed to define. As the aperture is 

diminished, the contact areas between two fracture 

surfaces may be appeared. This contact areas are 

the function of the effective normal stress applied to 

the single fracture. Figure 2 shows a fracture 

generated with the fractal dimension   of 2.5, the 

mean and standard deviation of fractal surface 

roughness are   and  , respectively 

and the mean aperture is  .

  2.2 Flow model

  In order to apply the random walk model to solute 

particle, it needs to determine the velocities   

and   at each cell of the grid. Once the variable 

apertures are generated in a rough single fracture 

which is discretized into square grids and each cell 

of size   being characterized by its own aperture , 

the local flow can be calculated by taking the 

following hypotheses: 1) the fluid flow takes place in 

the laminar range, 2) the cubic law is locally valid at 

the fracture cell's scale. The hydraulic conductivity 

between cells   and   is calculated as harmonic 

mean. The volumetric flow rate   between cells   

and   with apertures   and  , respectively, is then 

proportional to the hydraulic head gradient, as 

follows: 

   





 



 
 

    (3)

where     denotes gravitational acceleration, 

    is kinematic viscosity and   and   are 

hydraulic heads at cells   and  , respectively.

  In a steady-state flow condition, the principle of 

mass conservation at node   connecting to other 

nodes   can be written as the following equation:

  


                                 (4)

  After prescribed unit hydraulic heads at two 

opposite boundaries (Figure 3), Eq. (4) can be solved 

for the global flow in a single fracture. No flow 
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  
 

  

   
 

  
 

  

  
 

  
 

  


 

Figure 3. Schematic illustration of fluid flow through a rough single 
fracture. 

condition is imposed at two boundaries parallel to the 

flow direction.

  A five-point finite difference scheme using an 

iterative preconditioning conjugate gradient method is 

adopted to solve a system of linear equations from 

Eq. (4) (Ciarlet, 1983). The solution of this system 

yields the hydraulic head at each node, except for 

the nodes at the left and right boundaries. The 

volumetric flow rate between adjacent nodes is then 

calculated by using Eq. (3).

  Figure 4 shows the distributions of volumetric 

flow rate in the single fracture of     with two 

different values of mean aperture of (a) 

    and (b)    . It can be 

observed that when the mean aperture is diminished, 

the channeling effect for the flow becomes more 

apparent because of increment of contact areas.

2.3 Transport model

  The classical three-dimensional random walk model, 

which is expressed by Eq. (5), is used to simulate 

the solute transport in this study (Kinzelbach, 1986):

       (5)

(a)

(b) 

Figure 4. Distributions of volumetric flow rate in the single fracture of 
D=2.5 with two different apertures of (a) a=0.4mm and (b) 
a=0.2mm. Blue areas represents the contact zones. In the 
figures above, the local flow rates are represented as the 
log scale.

where      and    are the positions of particle 

  in    and   directions,   and   are the 

velocities of   and   directions,   is the particle 

numers and   is the random number extracted 

from the law of normal distribution with mean of 

zero and standard deviation of  .   can 

be calculated independently for each particle according 

to its diameter and by the bias of Stoke-Einstein 

equation.
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  In this study, we developed a new transport model 

which is based on the equations (Eq. 5) and can be 

able to simulate the transport behavior of solutes 

according to the variation of particle size.

3. Transport simulations

  3.1 Effect of fracture roughness variation

  In this section, the dispersion of particles according 

to the variation of fracture roughness is investigated. 

The four rough fractures of       and 

  are generated. For the upper and lower fractal 

surfaces, the mean of   and standard deviation 

of   are simultaneously used and the mean 

aperture is   for three different fractures.

  Figure 5 represents the results of transport 

simulations according to the fractal dimension 

(fracture roughness). Generally, more the fractal 

dimension increases, more the fracture is rough 

(Figure 6). With the increasing fractal dimension, the 

mean residence time is much faster and the particle 

clouds is more dispersed (Figure 5).

  Figure 7 represents the evolution of the longitudinal 

dispersion coefficient with time for four different fractal

dimensions. It can be identified that in the case of 

the smoothest fracture   , the coefficient of 

longitudinal dispersion is arrived very quickly at the 

asymptotic regime (the theoretical asymptotic regime 

Figure 5. Variation of breakthrough curves according to the fracture 
roughness. 

(a)

(b)

Figure 6. Volumetric flow rate distribution according to the fractal 
dimension   ((a)     and (b)    ).

(Eq. 1) is represented by a dotted line in Figure 7). 

For the fracture of    , the asymptotic regime 

is attained but less quickly than the case of fracture 

of    . For the more rough fractures     

and , the molecular diffusion does not have 

enough time to homogenize particles in the aperture 

and the asymptotic regime is not reached yet. This 

phenomenon has been observed by Grindrod and Lee 

(1996) and Wels et al. (1997). In general, when the 

fractal dimension increases, the velocity field in the 

rough fracture is perturbed and then more 

heterogenous: finally, the dispersion of particles 

displaced in the rough fracture increases.
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Figure 7. Variation of longitudinal dispersion according to the fracture 

roughness.Figure 7.

Figure 8. Comparison of breakthrough curves between 2D and 3D 

transport models for two different particle size of 1.0 and 10.0nm.

Fracture size 10cm × 2.2cm

Fracture aperture 0.5mm(uniform)

Particle size

(nm)

1

10

100

1000

Table 1. Summary of data used in the simulation

  3.2 Effect of particle size variation

    3.2.1 Single-sized particles

  This transport simulation was carried out with 

four different sizes of particles: 1, 10, 100 and 

1000nm. The particles are displaced in a smooth 

fracture with a length of 10cm and a width of 2.2cm, 

respectively. In this study, the 3D smooth fracture 

model was used and the aperture was constant as 

0.5mm.

Figure 9. Comparison of breakthrough curves between 2D and 3D 

transport models for particle size of 100.0nm.

Figure 10. Comparison of breakthrough curves between 2D and 3D 

transport models for particle size of 1000.0nm.

Radius

(nm)



(m2/s)

Critical time

(s)




(m2/s)




(m2/s)

1 1.87×10-10 812.0 8.23×10-10 8.23×10-10

10 1.87×10-11 8127.0 6.38×10-9 6.38×10-9

100 1.87×10-12 81273.0 6.36×10-8 4.30×10-8

1000 1.87×10-13 812736.0 6.36×10-7 8.64×10-7

Table 2. Results of transport simulation from 2D and 3D transport 

models for four different particle sizes.

  Table 2 represents the results simulated from 2D 

and 3D transport models for four different particle 

sizes. The breakthrough curves for each particle size 

are presented in Figures 8 (1 and 10nm), 9 (100nm) 

and 10 (1000nm) and in each figure, the results from 

2D and 3D transport model were compared.

  It can be observed that for small particle sizes (1 

and 10nm), the breakthrough curves between 2D and

3D transport models were almost identical. In figure 

8, it is shown that the mean residence times from 

both 2D and 3D transport simulations are bigger 
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than the critical time. For these cases, the dispersion 

of Taylor-Aris of Eq. (1) can be applied to simulate 

the particle transport in the fracture.

  However, for the particles of 100nm and 1000nm, 

the mean residence times are smaller than the 

critical time. The molecular diffusion does not have 

enough time to homogenize the particles in the 

fracture. In these cases, the dispersion of 

Taylor-Aris cannot be then adopted. 

  The 2D transport model supposes that the first 

arrival time of particles is very short because the 

coefficient of dispersion of Taylor-Aris increases 

according  to the particles' size. This result can be

derived from the fact that the mean velocity   is

calculated between  

   and 


 , where 

is the radius of a particle. This mean velocity is thus

bigger than that calculated between  


 and 


.

  The 3D model, which reflects the more microscopic 

and more physical processes (molecular diffusion and 

velocity profile of Poiseuille's type in the fracture),

considers the particles which are displaced slower

than the maximal velocity of the fracture 
 .

The theoretical arrival time of particles is 


 and

the calculated value is thus of 6666.6s. This arrival 

time corresponds to that calculated numerically in 

these simulation (Figure 11 and 12). This difference 

between 2D and 3D transport models induces the 

different coefficients of dispersion. As consequence, it 

can be identified that as shown in Table 1, the 2D 

transport model has a tendency to overestimate the 

dispersion and this tendency is more apparent 

according to increasing particles' size.

    3.2.2 Multi-sized particles

  In these simulations, the 3D transport model is used 

because this model is able to consider the variabilityof 

particle size and the parabolic velocity profile as well 

as the molecular diffusion.

Figure 11. Breakthrough curves from the law of normal distribution of 

particles' radii.

Figure 12. Breakthrough curves from the law of uniform distribution 

of particles' radii.

  The radii of particles are distributed by using two 

simple laws: uniform and normal (or Gaussian) 

distribution laws. The coefficients of molecular 

diffusion are thus calculated with these radii by the 

bias of the Stoke-Einstein formula. Each particle has 

its radius and coefficient of molecular diffusion. 

These radius and coefficient are used to consider the 

boundary condition and the diffusion process, 

respectively. 

  Figures 11 and 12 show the results of transport 

simulations and the breakthrough curves reflects the 

influence of the heterogeneity of particle size in the 

fracture. There is not the apparent difference 

between two breakthrough curves from the normal 

and uniform distribution laws. It seems that the 

standard deviation applied to the normal distribution 

law is not enough to influence the transport. 

However, the uniform distribution law imposes an 

equiprobability of particles' radii between 1 and 
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100nm and gives a breakthrough curve deformed by 

the coexistence of very small and very big particles. 

These results agrees well with those by James and 

Chrysikopoulos (1999) and Wels et al. (1996).

4. Conclusion

  In this study, the 3D transport model based on the 

random walk technique was developed to simulate 

the solute transport in a rough fracture. The 

summary of the results obtained from the transport 

simulations is as follows:

1. The choice of the 2D and 3D transport models is 

important according to the given transport 

problems (e.g. particle size, etc.).

2. When the roughness of the fracture increases, the 

particles arrive thus more quickly and the 

dispersion of particles increases.

3. When the laws of distribution of particles' radii 

are introduced, it can be shown that the 

breakthrough curves are very different with those 

in the case of the uniform size of particles. The 

heterogeneity of the particle size influences thus 

the solute transport.

4. The particles of larger size were collected more 

quickly at the lower boundary and their dynamic 

dispersion was thus larger.

5. When the heterogeneity of particle size (that is, 

the standard deviation of particle size) increases, 

the dispersion of the solute increases.

  We can expect that the transport model developed 

in this study will be applied to analyze the transport 

behavior of various solutes such as radioactive 

substances which may be generated from the 

radioactive waste disposal system.
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