DOI QR코드

DOI QR Code

자동섬유적층법을 이용한 열가소성 복합재료 접시형 안테나 반사판 개발

Development of a Thermoplastic Composite Parabolic Antenna Reflector using Automated Fiber Placement Method

  • 김진봉 (한국기계연구원 신기능재료연구본부 소재성형연구센터) ;
  • 김태욱 (한국기계연구원 신기능재료연구본부 소재성형연구센터)
  • 발행 : 2006.02.01

초록

일방향 섬유로 보강된 고성능 복합재료의 경우 모든 방향에서 곡률을 가지는 구조물의 제작에 용이하지 않다. 본 연구에서는 높은 비강성, 비강도를 가지는 일방향으로 보강된 AS4/PEEK 프리프레그 테이프를 이용한 축소 시제 복합재료 접시형 안테나 반사판의 개발 결과를 보여준다. 개발을 위해서 유한요소법을 통한 적층인자 연구를 통한 저열팽창/등방변형의 반사판 설계기법을 확립하였으며, Fiber Placement System을 통한 자동섬유적층법을 이용하여 접시형 안테나 반사판이 제작되었다. 제작된 반사판은 Full Bridge Circuit의 Strain Cage를 이용한 열변형 실험법으로 열팽창 거동에 대한 실험을 수행하였으며, 열변형 해석결과와의 비교를 통하여 제작된 구조물을 검증하였다.

It is very difficult to make complex 3 dimensional curved-shape composite laminates using the advanced unidirectional composite prepregs. This study shows development process of subscale composite parabolic antenna reflector using unidirectional AS4/PEEK prepreg tapes. The AS4/PEEK thermoplastic composite materials are known to have good thermal and chemical stabilities in addition to their high specific strength and modulus. Various lamination methods were investigated through finite element analyses to make up the laminate design of the reflector. The automated fiber placement method was used to fabricate the reflector. The thermal expansion test using full-bridge strain gage circuits was done to verity the performance of the composite product.

키워드

참고문헌

  1. CA Mahieux, 'Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry : the example of carbon-fiber reinforced thermoplastic flywheel,' Composite Structures, Vol. 52, 2001, pp. 517-521 https://doi.org/10.1016/S0263-8223(01)00041-1
  2. N.J. Johnston, H.L. Belvin, R. J. Cano, J. M Marchello, and A. B. Hulcher, 'A prototype research laboratory for automated fabrication of high performance composites,' ICCMI2-Europe, Paris, 1999, pp. 748-755
  3. P. Cirese, M. Marchetti, S. Sgubini, 'Design and manufacturing criteria for high precision composite antenna Reflector. prediction of residual distortions after the manufacturing process,' Composite Structures, Vol. 16, 1990, pp. 209-235 https://doi.org/10.1016/0263-8223(90)90073-N
  4. R. Sharp, S. Holmes, C. Woodall, 'Material selection/ fabrication issues for thermoplastic fiber placement,' Journal of Thermoplastic Composite Materials, Vol. 8, 1995, pp. 2-14 https://doi.org/10.1177/089270579500800102
  5. J.A. Barnes, I.J. Simms, 'Thermal expansion behavior of thermoplastic composite materials,' Journal of Thermoplastic Composite Materials, Vol. 3, pp.66-80, 1990 https://doi.org/10.1177/089270579000300107
  6. J.A. Barnes, 'Thermal expansion behavior of thermoplastic composites, Part II,' Journal of Material Science, Vol. 28, 1993, pp. 4974-4982 https://doi.org/10.1007/BF00361164
  7. K.J. Yoon, P.J. Kim, T.W. Kim, E.J. Kim, 'Effect of anisotropy of thermal expansion properties on the thermal distortion of L-section AS4/PEEK composite structures,' Internationals SAMPE Symposium, USA, 1995, pp. 1026-1033
  8. 이대길, 정광섭, 최진호, 복합재료 역학 및 제조기술, 시그마 프레스, 1998
  9. T.J. Vogler, S. Kyriakides, 'Initiation and axial propagation of kink bands in fiber composites,' Acta Mater, Vol. 45, No.6, 1997, pp. 2443-2454 https://doi.org/10.1016/S1359-6454(96)00350-3
  10. C.A. Weeks, C.T. Sun, 'Modeling non-linear rate-dependent behavior in fiber-reinforced composites,' Composites Science and Technology, Vol. 58, 1998, pp. 603-611 https://doi.org/10.1016/S0266-3538(97)00183-8
  11. M.H. Jen, C.H. Lee, 'Strength and life in thermoplastic composite laminates under static and fatigue loads. Part I: Experimental,' International Journal of Fatigue, Vol. 20, No.9, 1998, pp. 605-615 https://doi.org/10.1016/S0142-1123(98)00029-2
  12. M.H. Jen, C.H. Lee, 'Strength and life in thermoplastic composite laminates under static and fatigue loads. Part II: Formulation,' International Journal of Fatigue, Vol. 20, No.9, 1998, pp. 617-629 https://doi.org/10.1016/S0142-1123(98)00030-9
  13. 김진봉, 김태욱, '자동섬유적층법을 이용한 고성능 복합재료 구조물 제작의 자동화,' 기계와 재료, 제14권, 1호, 2002, pp. 113-120
  14. 이상관, '직조형 탄소 섬유 강화 알루미늄 기지 금속복합 재료의 제조와 특성 분석,' Ph. D. Thesis, KAIST, 2002