DOI QR코드

DOI QR Code

Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures

증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성

  • Kang, Young-Hun (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kim, Bong-Seok (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Tai, Weon-Pil (Fine Chemical Industry Support Center, Ulsan Industry Promotion Techno Park) ;
  • Kim, Ki-Chul (Electronics and Telecommunications Research Institute) ;
  • Suh, Su-Jeung (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Park, Tae-Seok (Advanced Material Process of Information Technology, Sungkyunkwan University) ;
  • Kim, Young-Sung (Advanced Material Process of Information Technology, Sungkyunkwan University)
  • 강영훈 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 김봉석 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 태원필 (울산산업진흥테크노파크 정밀화학센터) ;
  • 김기출 (한국전자통신연구소) ;
  • 서수정 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 박태석 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터) ;
  • 김용성 (성균관대학교 정보통신용 신기능성 소재 및 공정연구센터)
  • Published : 2006.02.01

Abstract

We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

Keywords

References

  1. H. Ohno, 'Making Nonmagnetic Semiconductor Ferromagneic,' Science Direct, 281 [5379] 951-56 (1998)
  2. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, '(Ga, Mn)As : A New Diluted Magnetic Semiconductor Based on GaAs,' J. Appl. Phys. Lett., 69 [3] 363 (1996) https://doi.org/10.1063/1.118061
  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, 'Zenner Model Description of Ferromagnetism in Zincblende Magnetic Semiconductors,' Science Direct, 287 [5455] 1019-22 (2000)
  4. K. Sato and H. Katayama-Yoshida, 'Electronic Structure and Ferromagneti SM of Transition-Metal-Impurity-Doped Zinc Oxide,' Physica B, 308-320 904-07 (2001)
  5. K. Sato and H. Katayama-Yoshida, 'Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors,' Jpn. J. Appl. Phys. Part 2, 39 [6B] 555-58 (2000) https://doi.org/10.1143/JJAP.39.555
  6. A. B. Pakhomov, B. K. Roberts, A. Tuan, V. Shutthanandan, D. McCready, S. Thevuthasan, S. A. Chambers, and K. M. Krishnan, 'Studies of Two- and Three-Dimensional ZnO:Co Structures Through Different Synthetic Routes,' J. Appl. Phys., 95 [11] 7393-95 (2004) https://doi.org/10.1063/1.1669224
  7. N. Jedrecy, H. J. von Bardeleben, Y. Zheng, and J.-L. Cantin, 'Electron Paramagnetic Resonance Study of $Zn_{1-X}Co_X$ O : A Predicted High-Temperature Ferromagnetic Semiconductor,' Phys. Rev. B, 69 [041308] 1-4 (2004)
  8. W. Prellier, A. Fouchet, B. Mercey, C. Simon, and B. Raveau, 'Laser Ablation of Co:ZnO Films Deposited from Zn and Co Metal Targets on (0001) $Al_2O_3$ Substrates,' Appl. Phys. Lett., 82 [20] 3490-92 (2003) https://doi.org/10.1063/1.1578183
  9. S. S. Yan, C. Ren, X. Wang, W. Xin, Z. X. Zhou, L. M. Mei, M. J. Ren, Y. X. Chen, Y. H. Liu, and H. Garmestani, 'Ferromagnetism and Magnetoresistance of Co-ZnO Inhomogeneous Magnetic Semiconductors,' Appl. Phys. Lett., 84 [13] 2376-78 (2004) https://doi.org/10.1063/1.1690881
  10. H. J. Kim, I. C. Song, J. H. Sim, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, 'Growth and Characterization of Spineltype Magnetic Semiconductor $ZnCo_2O_4$ by Reactive Magnetron Sputttering,' Phys. Stat. Sol, 241 [7] 1553-56 (2004) https://doi.org/10.1002/pssb.200304656
  11. N. A. Theodoropoulou, A. F. Hebard, D. P. Norton, J. D. Budai, L. A. Boatner, J. S. Lee, Z. G. Khim, Y. D. Park, M. E. Overberg, S. J. Pearton, and R. G. Wilson, 'Ferromagnetism in Co- and Mn-Doped ZnO,' Solid-State Electronics, 47 2231-35 (2003) https://doi.org/10.1016/S0038-1101(03)00203-X
  12. N. Viart, M. Richard-Plouet, D. Muller, and G. Pourroy, 'Synthesis and Characterization of Co/ZnO Nanocomposites : Towards New Perspectives Offered by Metal/Piezoelectric Composite Materials,' Thin Solid Films, 437 1-9 (2003) https://doi.org/10.1016/S0040-6090(02)00785-X
  13. Y.-D. Ko, S.-B. Ko, M.-S. Choi, W.-P. Tai, K.-C. Kim, J.-M. Kim, S.-J. Shu, and Y.-S. Kim, 'Microstructure and Magnetic Properties of $Zn_{1-X}Co_XO$ Film Prepared by Pulsed Magnetron Sputtering(in Korean),' J. Kor. Ceram. Soc., 42 [3] 211-17 (2005) https://doi.org/10.4191/KCERS.2005.42.3.211
  14. G. Sanon, R. Rup, and A. Mansingh, 'Growth and Characterization of Tin Oxide Films Prepared by Chemical Vapour Deposition,' Thin Solid Films, 190 [2] 287-301 (1990) https://doi.org/10.1016/0040-6090(89)90918-8
  15. E. Mirica, G. Kowach, P. Evans, and H. Du, 'Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering,' Crystal Growth & Design, 4 [1] 147-56 (2004) https://doi.org/10.1021/cg025595j
  16. E. Mirica, G. Kowach, and H. Du, 'Modified Structure Zone Model to Describe the Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering,' Crystal Growth & Design, 4 [1] 157-60 (2004) https://doi.org/10.1021/cg025596b
  17. W. Tang, K. Xu, P. Wang, and X. Li, 'Surface Roughness and Resistivity of Au Film on Si-(111) Substrate,' Microelectronic Engineering, 66 [1/4] 445-50 (2003) https://doi.org/10.1016/S0167-9317(02)00909-7
  18. Z. Jin, M. Murakami, T. Fukumura, Y. Matsumoto, A. Ohtomo, M. Kawasaki, and H. Koinuma, 'Combinatorial Laser MBE Synthesis of 3d Ion Doped Epitaxial ZnO Thin Films,' J. Crystal Growth, 214-215 55-8 (2000) https://doi.org/10.1016/S0022-0248(00)00058-0
  19. Y. Z. Yoo, T. Fukumura, Z. Jin, Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, and H. Koinuma, 'ZnO-CoO Solid Solution Thin Films,' J. Appl. Phys., 90 [8] 4246-50 (2001) https://doi.org/10.1063/1.1402142
  20. J. Diouri, J. P. Lascaray, and M. E. Amrani, 'Effect of the Magnetic Order on the Optical-Absorption Edge in $Cd_{1-X} Mn_XTe$,' Phys. Rev. B, 31 7995 (1985) https://doi.org/10.1103/PhysRevB.31.7995
  21. J. H. Park, M. G. Kim, H. M. Jang, S. Ryu, and Y. M. Kim, 'Co-Metal Clustering as the Origin of Ferromagnetism in Co-Doped ZnO Thin Films,' Appl. Phys. Lett., 84 [8] 1338- 40 (2004) https://doi.org/10.1063/1.1650915
  22. J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, and W. K. Choo, 'The Origin of Room Temperature Ferromagnetism in Cobalt-Doped Zinc Oxide Thin Films Fabricated by PLD,' Science Direct, 24 1847-51 (2004)
  23. K. Ueda, H. Tabata, and T. Kawai, 'Magnetic and Electric Properties of Transition-Metal-Doped ZnO Films,' Appl. Phys. Lett., 79 [7] 988 (2001) https://doi.org/10.1063/1.1384478
  24. H. Munekata, T. Abe, S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, and H. Takagi, 'Lightinduced Ferromagnetism III-V-Based Diluted Magnetic Semiconductor Heterostructures,' J. Appl. Phys., 81 4862 (1997) https://doi.org/10.1063/1.364889
  25. S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takgi, and H. Munekata, 'Ferromagnetic Order Induced by Photogenerated Carriers in Magnetic III-V Semiconductor Heterostructures of (In,Mn)As/GaSb,' Phys. Rev. Lett., 78 4617 (1997) https://doi.org/10.1103/PhysRevLett.78.4617