Computations of Flows and Acoustic Wave Emitted from Moving Body by ALE Formulation in Finite Difference Lattice Boltzmann Model

차분격자볼츠만법에 ALE모델을 적용한 이동물체 주위의 흐름 및 유동소음의 수치모사

  • KANG HO-KEUN (Institute of marine Industry, Gyeongsang National University)
  • 강호근 (경상대학교 해양산업연구소)
  • Published : 2006.02.01

Abstract

In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in the finite difference lattice Boltzmann method. Some effects are checked by comparing flaw about a square cylinder in ALE formulation and that in the fixed coordinates, and both agree very well. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer region is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in two- and three-dimensional cases are simulated.

Keywords

References

  1. 강호근, 김은라 (2004). 'Vortex-Edge의 상호작용에 기인한 유동 소음의 전산해석', 한국해양공학회지 제18권, 제5호, pp 15-21
  2. Alexander, F.J., Chen, S. and Sterling, D.J. (1993). 'Lattice Botlzmann Thermodynamics', Phys, Rev. E, Vol 47, pp 2249-2252 https://doi.org/10.1103/PhysRevE.47.R2249
  3. Bhatnagar, P.L., Gross, E.P. and Krook, M. (1954). 'A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One Component Systems', Phys. Rev., Vol 94, pp 511-525 https://doi.org/10.1103/PhysRev.94.511
  4. Cao, N., Chen, S., Jin, S. and Martinez, D. (1997). 'Physical Symmetry and Lattice Symmetry in the Lattice Boltzmann Method', Phys. Rev. E, Vol 55, pp R21-R24 https://doi.org/10.1103/PhysRevE.55.R21
  5. Chen, Y., Ohashi, H. and Akiyama, M. (1994). 'Thermal Lattice BGK Model without Nonlinear Deviations in Macrodynamic Equations', Phys. Rev. E, Vol 50, pp 2776-2783 https://doi.org/10.1103/PhysRevE.50.2776
  6. Chapman, S. and Cowling, T.G. (1952). Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge
  7. Hirt, C.W., Amsden, A.A. and Cook, J.I. (1974). 'An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds', J. Comp. Phys., Vol 14, pp 227-253 https://doi.org/10.1016/0021-9991(74)90051-5
  8. Kang, H.K, Tsutahara, M., Ro, K.D. and Lee, Y.H. (2002). 'Numerical Simulation of Shock Wave Propagation Using the Finite Difference Lattice Boltzmann Method', KSME Int. J., Vol 16, No 10, pp 1327-1335
  9. Kang, H.K., Ro, K.D., Tsutahara, M. and Lee, Y.H. (2003). 'Numerical Prediction of Acoustic Sounds Occurring by the Flow Around a Circular Cylinder', KSME Intl. J., Vol 17, No 8, pp 1219-1225
  10. Lallemand, P. and Luo, L.S. (2003). 'Lattice Boltzmann Method for Moving Boundaries', J. Comp. Phys., Vol 184, pp 406-421 https://doi.org/10.1016/S0021-9991(02)00022-0
  11. McNamara, G. and Zanetti, B. (1988). 'Use of the Boltzmann Equation to Simulate Lattice-Gas Automata', Phys. Rev. Lett., Vol 61, pp 2332-2335 https://doi.org/10.1103/PhysRevLett.61.2332
  12. Rothman, D. and Zaleski, S. (1997). Lattice-Gas Cellular Automata, Cambridge University Press, Cambridge
  13. Seta, T., Kono, K., Martinez, D. and Chen, S. (1999). 'Lattice Botlzmann Scheme for Simulating Two-Phase Flows', Trans. JSME J. B, Vol 65, No 634, pp 1955-1963 https://doi.org/10.1299/kikaib.65.1955
  14. Tsutahara, M, Takada, N. and Kataoka, T. (1999). Lattice Gas and Lattice Botlzmann Methods, Corona-sha.(in Japanese)
  15. Takada, N., Yamakoshi, Y. and Tsutahara, M. (1998). 'Numerical Analysis of Fluid Motions by Three-Dimensional Thermal Lattice Boltzmann Model', Trans. JSME J. B, Vol 64, No 628, pp 3934-3941 https://doi.org/10.1299/kikaib.64.3934