DOI QR코드

DOI QR Code

Degradation Behaviors of Poly(l-lactide) using Model Systems

모델 시스템을 이용한 Poly(l-lactide)의 분해거동

  • Min Seong-Kee (Division of Chemical Engienering, Pukyong National University) ;
  • Moon Myong-Jun (Division of Chemical Engienering, Pukyong National University) ;
  • Lee Won-Ki (Division of Chemical Engienering, Pukyong National University)
  • 민성기 (부경대학교 응용화학공학부) ;
  • 문명준 (부경대학교 응용화학공학부) ;
  • 이원기 (부경대학교 응용화학공학부)
  • Published : 2006.02.01

Abstract

The hydrolytic kinetics of biodegradable poly(l-lactide) (PLLA) have been studied by using two model systems, solution-grown single crystal (SC) and Langmuir monolayer techniques, for elucidating the mechanism for both alkaline and enzymatic degradations. The present study investigated the parameters such as degradation medium and time. The Langmuir mono layers of PLLA showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to neutral subphase. Both degradation mediums had moderate concentrations to show a maximized activity, depending on their sizes. An alkaline degradation of SCs of PLLA showed the decrease of molecular weight of the remained crystals due to the erosion of chain-folding surface. However, the enzymatic degradation of SCs of PLLA occurred in the crystal edges thus the molecular weight of remained crystals was not changed. This behavior might be attributed to the size of enzymes which is much larger than that of alkaline ions; that is, the enzymes need larger contact area with monolayers to be activated.

Keywords

References

  1. Scott, G., 2002, Degradable Polymers 2nd Ed.: Kluwer Academic Publ.: London, pp. 1-13
  2. Doi, Y. and K. Fukuda, 1993, Biodegradable Plastics and Polymers: Elsevier Sci.: Am­sterdam, pp. 79-91
  3. 김영욱, 조원영, 조동만, 1994, 전분충진형 생분해성 고분자의 특성, 고분자과학과 기술, 5, 19-23
  4. 강태규, 정호갑, 윤상준, 1994, 광분해성 고분자의 개발 현황, 고분자과학과 기술, 5, 24-28
  5. Bergsma, J. E., W. C. de Bruijn, F. R. Rorema, R. R. M. Bos and G. Boering, 1995, Late degradation tissue response to poly (1-lactide) bone plates and screws, Biomater, 16, 25-31 https://doi.org/10.1016/0142-9612(95)91092-D
  6. Eliaz, R. E. and J. Kost, 2000, Charac­terization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins, J. Biomed. Mater. Res., 50, 388-396 https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<388::AID-JBM13>3.0.CO;2-F
  7. Furukawa, T., Y. Matsusue, T. Yasunaga, Y. Shikinarni, M. Okuno and T. Nakamura, 2000, Hisomorphometric study on high-strength hydroxyapatite/poly(l-lactide) composite rods for internal fixation of bone fractures, J. Biomed. Mater. Res., 50, 410-419 https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<410::AID-JBM16>3.0.CO;2-Y
  8. Albertsson, A. C. and S. Karlsson, 1990, Degradable materials: Biodegradation and test methods for environmental and biomedical applications of polymers: CRC Press: Boca Raton, pp. 263-286
  9. Albertsson, A. C., C. Barenstedt and S. Karlsson, 1992, Susceptibility of enhanced environmentally degradable polyethylene to thermal and photooxidation, Polym. Degrad. Stab., 37, 163-171 https://doi.org/10.1016/0141-3910(92)90080-O
  10. Abe, H., H. Aoki and Y. Doi, 1998, Mor­phologies and enzymatic degradability of melt­crystallized poly(3-hydroxybutyric acid-co-6­hydroxyheanoic acid), Macromol. Symp., 130, 81-89
  11. Lee, W. K., J. H. Ryou and C. S. Ha, 2003, Retardation of enzymatic degradation of microbial polyesters using surface chemistry: effect of addition of non-degradable polymers, Surface Science, 542(3), 235-243 https://doi.org/10.1016/S0039-6028(03)00981-6
  12. Nakamura, T., S. Hitomi, S. Watanabe, Y. Shimizu, S. H. Hyun and Y. Ikeda, 1985, Bioabsorption of polylactides with different molecular properties, J. Biomed. Mater. Res., 23, 1115-1130 https://doi.org/10.1002/jbm.820231003
  13. Mauduit, J., N. Bukh and M. Vert, 1993, Gentamycin/poly(lactic acid) blends aimed at sustained release local antibiotic therapy administered per-operatively: III The case of gentamycin sulfate in films of high and low molecular weight poly(dl-lactic acid), J. Control. Rel., 25, 43-49 https://doi.org/10.1016/0168-3659(93)90093-K
  14. Chu, C. C., 1981, Hydrolytic degradation of poly (glycolic acid): tensile strength and crystallinity study, J. Appl. Poly. Sci., 26, 1727-1734 https://doi.org/10.1002/app.1981.070260527
  15. Fredericks, R. J., A. J. Melverger and L. J. Dolegiewtz, 1984, Morphological and structural changes in a copolymer of glycolide and lactide occurring as a result of hydrolysis, J. Polym. Sci.: Polym. Phys. Ed., 22, 57-66 https://doi.org/10.1002/pol.1984.180220106
  16. Reeve, M. S., S. P. McCarthy, M. J. Downey, R. A. Gross, 1994, Polylactides stereoche­mistry: Effect on enzymatic degradability, Macromolecules, 27, 825-831 https://doi.org/10.1021/ma00081a030
  17. Li, S. and S. McCarthy, 1999, Influence of crystallinity and stereochemistry on the enzy­matic degradation of poly(lactide)s, Macro­molecules, 32, 4454-4456 https://doi.org/10.1021/ma990117b
  18. Chu, C. C., 1981, An in vitro study of the effect of buffer on the degradation of poly (glycolic acid) stutures, J. Biomed. Mater. Res., 15, 19-27 https://doi.org/10.1002/jbm.820150106
  19. Lee, W. K. and J. A. Gardella, Jr., 2000, Hydrolytic kinetics of biodegradable polyester monolayers, Langmuir, 16, 3401-3406 https://doi.org/10.1021/la990800r
  20. Miyata, T. and T. Masuko, 1997, Morphology of poly(l-lactide) solution-grown crystals. poly­mer, 38, 4003-4009 https://doi.org/10.1016/S0032-3861(96)00987-1
  21. Iwata, T. and Y. Doi, 1999, Crystal structure and biodegradation of aliphatic polyester crystals, Macromol. Chem. Phys., 200, 2429-­2442 https://doi.org/10.1002/(SICI)1521-3935(19991101)200:11<2429::AID-MACP2429>3.0.CO;2-#
  22. Lee, W. K., N. Richard and J. A. Gardella, Jr., 2002, The hydrolytic degradation of polyester blend monolayers at the air/liquid interface: effects of a slowly degrading component, Langmuir, 18, 2309-2312 https://doi.org/10.1021/la011663c
  23. Fujita, M. and Y. Doi, 2004, Annealing and melting behavior of poly(1-lactic acid) single crystals as revealed by in situ atomic force microscopy, Biomacromolecules, 4, 1301-1307 https://doi.org/10.1021/bm034091e
  24. Nobes, G. A. R., R. H. Marchessault, H. Chanzy, B. H. Briese and D. Jendrossek, 1996, Spintering of poly(3-hydroxybutyrate) single crystals by PHB-depolymerase A from Pseudomonas lemoignei, Macromolecules, 29, 8330-8336 https://doi.org/10.1021/ma961219u
  25. Iwata, T., Y. Doi, F. Kohubu and S. Terarnachi, 1999, Alkaline hydrolysis of solu­tion-grown poly(3-hydroxybutyrate) single cry­stals, Macromolecules, 32, 8325-8330 https://doi.org/10.1021/ma991248f
  26. Lee, W. K., T Iwata, H. Abe and Y. Doi, 2000, Studies on the enzymatic hydrolysis of solution-grown poly[(R)- 3-hydroxybutyrate] crystals; defects in crystals, Macromolecules, 33, 9535-9541 https://doi.org/10.1021/ma001016c
  27. Roberts, G., 1990, Langmuir-Blodgett Films: Plenum Press: New York, pp.18-19