A Review on the Paleoclimate Change Inferred from Borehole Temperatures

시추공 온도자료를 이용한 고기후 연구에 대한 개관

  • Lee, Youngmin (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources, The Research Institute of Basic Sciences, Seoul National University) ;
  • Kim, Hyoung-Chan (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Yoonho (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 이영민 (한국지질자원연구원 지하수지열연구부, 서울대학교 기초과학연구원) ;
  • 김형찬 (한국지질자원연구원 지하수지열연구부) ;
  • 송윤호 (한국지질자원연구원 지하수지열연구부)
  • Published : 2006.02.01

Abstract

To properly interpret and define climatic warming trends of the last $100\~150$ years.; climatic changes over the past several centuries must be constrained. High resolution surface air temperatures (SATs) to reconstruct global temperature trends extend back only to the late of 19th century. Fortunately, on long time scale and over large areas, ground surface temperatures (GSTs) track SATs. GST changes penetrate into the subsurface and are recorded as transient temperature perturbation. Therefore, borehole temperatures can be used to recover climate change over the last millennium in an area; paleoclimate change inferred from borehole temperatures can be used to interpret global warming over the last century, little ice age, and medieval warm period.

19세기말부터 진행된 지구온난화를 규정하기 위해서는 기상관측목적의 지표대기온도(Surface air temperature; SAT) 측정이 시작된 19세기말 이전의 온도 자료가 필요하다. 다행히 과거의 지표온도(Ground surface temperature; GST)가 지중으로 전파되어 기록된 시추공 온도자료로 일반적으로 과거 약 1,000년 전까지의 기온변화에 대한 정보를 얻을 수 있다. 시추공 온도자료로부터 복원된 과거의 기온변화의 정보는 19세기말부터 시작된 지구온난화를 규정하고 또한 그 이전에 있었던 소빙하기(Little Ice Age)와 중세온난기(Medieval Warm Period) 같은 기후변화를 알아내는데 유용하게 사용될 수 있다.

Keywords

References

  1. Beltrami, H., Ferguson, G., and Harris, R. N. (2005) Long-term tracking or climate change by underground temperatures. Geophys. Res. Lett., v. 32, doi:10.1029/2005GL023714
  2. Beltrami, H., and Mareschal, J. C. (1991) Recent warming in Eastern Canada: evidence from geothermal measurements. Geophys. Res. Lett., v. 18, p. 605-608 https://doi.org/10.1029/91GL00815
  3. Beltrami, H., and Mareschal, J. C. (1992) Ground temperature histories for Central and Easteru Canada from geothermal measurements: little ice age signature. Geophys. Res. Lett., v. 19, p. 692-698
  4. Benfield, A. E. (1939) Terrestrial heat flow in Great Britain. Proc. R. Soc. London, Series A, v, 173, p. 428-450
  5. Birch, E (1948) The effects of Pleistocene climatic variations upon geothermal gradients. Am. J. Sci., v. 246, p. 729-760 https://doi.org/10.2475/ajs.246.12.729
  6. Bodri, L., and Cermak, V. (1998) Last 250 years climate reconstruction inferred from geothermal measurements in the Czech Republic. Tectonophysics, v. 291, p. 251-261 https://doi.org/10.1016/S0040-1951(98)00044-4
  7. Bodri, L., and Cermak, V. (2005) Borehole temperatures, climate change and the pre-observational surface air temperature mean: Allowance for hydraulic conditions. Global and Planetary Change, v. 45, p. 265-276 https://doi.org/10.1016/j.gloplacha.2004.09.001
  8. Bodri, L., and Dovenyi, P. (2004) Climate change of the last 2000 years inferred from borehole temperatures: data from Hungary. Global and Planetary Change, v. 41, p. 121-133 https://doi.org/10.1016/j.gloplacha.2003.10.001
  9. Bullard, E. C. (1939) Heat flow in South Africa. Proc. R. Soc. London, Series A, v. 173, p. 474-502
  10. Carslaw, H. S., and Jaeger, J. C. (1959) Conduction of heat in solids. 2nd edn, Oxford University Press, Oxford
  11. Cermak, v., Bodri, L., and Safanda, J. (1992) Recent climate change recorded in the underground evidence from Cuba. Paleogeogr. Palaeoclimatol. Palaeoecol., v. 98, p. 219-223 https://doi.org/10.1016/0031-0182(92)90200-O
  12. Chapman, D. S., Chisholm, T. J., and Harris, R. N. (1992) Combining borehole temperature and meteorologic data to constrain past climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol., v. 98, p. 269-281 https://doi.org/10.1016/0031-0182(92)90205-J
  13. Chisholm T. J., and Chapman, D. S. (1992) Climate change inferred from analysis of borehole temperatures: An example from western Utah. J. Geophys. Res., v. 97, p. 14155-14175 https://doi.org/10.1029/92JB00765
  14. Ciauser, C., Giese, P., Huenges, E., Kohl, T., Lehmann, H., Rybach, L., Safanda, J., Wilhelm, H., Windloff, K, and loth G. (1997) The thermal regime of the crystall. ine-.contrrrentl1 crust: Implications from the KTB. J. Geophys. Res., v. 102, p. 18417-18441 https://doi.org/10.1029/96JB03443
  15. Clauser, C., and Huenges, E. (1993) KTB thermal regime and heat transport mechanisms-current knowledge. Scientific Drilling, v. 3, p. 271-281
  16. Clauser, C., and Mareschal, J.-C. (1995) Ground temperature history in central Europe from borehole temperature data. Geophys. J. Int., v. 121, p. 805-817 https://doi.org/10.1111/j.1365-246X.1995.tb06440.x
  17. Correia, A., and Safanda, J. (1999) Preliminary ground surface temperature' history in mainland Portugal reconstructed from borehole temperature logs. Tectonophysics, v. 306, p. 269-275 https://doi.org/10.1016/S0040-1951(99)00060-8
  18. Deming, D. (1995) Climatic warming in North America: Analysis of borehole temperatures. Science, v. 268, p. 1576-1577 https://doi.org/10.1126/science.268.5217.1576
  19. Deming, D., and Borel, R. A. (1995) Evidence for climatic warming in northcentral Oklahoma from analysis of borehole temperatures. J. Geophys. Res., v. 100, p. 22017-22032 https://doi.org/10.1029/95JB02625
  20. Drury, M. J., Jessop, A. M., and Lewis, T. J. (1984) The detection of ground water flow by precise temperature measurements in boreholes. Geothermics, v. 13, p. 163-174 https://doi.org/10.1016/0375-6505(84)90013-0
  21. Drury, M. J. and Lewis, T. J. (1983) Water movement within Lac du Bonnet Batholith as revealed by detailed thermal studies of three closely-spaced boreholes. Tectonophysics, v. 95, p. 337-351 https://doi.org/10.1016/0040-1951(83)90077-X
  22. Edwardson, M. J., Girner, H. M., Parkison, H. R., Williams, C. D., and Matthews, C. S. (1962) Calculation of formation temperature disturbances caused by mud circulation. Journal of Petroleum Technology, April, p. 416-426
  23. Golovanova, I. V., Harris, R. N., Selezniova, G. V., and Stulc, P. (2001) Evidence of climatic warming in the southern Urals region derived from borehole temperatures and meteorological data. Global and Planetary Change, v. 29, p. 167-188 https://doi.org/10.1016/S0921-8181(01)00088-1
  24. Gosselin, C., and Mareschal, J.-C. (2003) Recent warming in northwestern Ontario inferred from borehole temperature profiles. J. Geophys. Res., v. 108, doi: 10.1029/2003JB002447
  25. Goto, S., Hamamoto, H., and Yamano, M. (2005a) Climatic and environmental changes at southeastern coast of Lake Biwa over past 3000 years, inferred from borehole temperature data. Physics of the Earth and Planetary Interiors, v. 152, p. 314-325 https://doi.org/10.1016/j.pepi.2005.04.012
  26. Goto, S., Kim, H. C., Uchida, Y., and Okubo, Y. (2005b) Reconstruction of the ground surface temperature history from the borehole temperature data in the southeastern part of the Republic of Korea. Journal of Geophysics and Engineering, v. 2, p. 312-319 https://doi.org/10.1088/1742-2132/2/4/S03
  27. Harris, R. N., and Chapman, D. S. (1995) Climatic change on the Colorado Plateau of eastern Utah inferred from borehole temperatures. J. Geophys. Res., v. 100, p. 6367-6381 https://doi.org/10.1029/94JB02165
  28. Harris, R. N., and Chapman, D. S. (2001) Mid-latitude( 30'-60'N) climatic warming inferred by combining borehole temperatures with surface air temperature. Geophys. Res. Lett., v. 28, p. 747-750 https://doi.org/10.1029/2000GL012348
  29. Hotchkiss, W. O., and Ingersoll, L. R. (1934) Post-glacial time calculations from recent geothermal measurements in the Calumet copper mines. J. Geol., v. 42, p. 113-142 https://doi.org/10.1086/624142
  30. Huang, S., PoUack, H. N., and Shen, P.-Y. (2000) Temperature trends over the past five centuries reconstructed from borehole temperature. Nature, v. 403, p. 756-758 https://doi.org/10.1038/35001556
  31. Huang, S., Pollack, H. N., Wang, J.-Y., and Cermak, V. (1995) Ground surface temperature histories inverted from subsurface temperatures of two boreholes located in Panxi, SW China. Journal of Southeastern Asian Earth Sciences, v. 12, p. 113-120 https://doi.org/10.1016/0743-9547(95)00016-X
  32. Huenges, E., Burkhardt, H., and Erbas, K. (1990) Thermal conductivity profile of the KTB pilot borehole. Scientific Drilling, v. 1, p. 224-230
  33. Jaeger, J. C. (1961) The effect of the drilling fluid on temperatures measured in boreholes. J. Geophys. Res., v. 66, p. 563-569 https://doi.org/10.1029/JZ066i002p00563
  34. Jeffreys, H. (1937) The disturbances of the temperature gradient in the earth's crust by inequalities in height. Mon. Not. R. Astr. Soc. Geophys. Suppl., v. 4, p. 309-312
  35. Jones, M. Q. W., Tyson, P. D., and Cooper, G. R. J. (1999) Modelling climatic change in South Africa from perturbed borehole temperature profiles. Quaternary International, v. 57/58, p. 185-192 https://doi.org/10.1016/S1040-6182(98)00059-7
  36. Kukkonen, I. T., and Safanda, J. (1996) Paleoclimate and structure: the most important factors controlling subsurface temperatures in crystalline rocks. A case history from Outokumpu, eastern Finland, Geophys. J. Int., v. 126, p. 101-112 https://doi.org/10.1111/j.1365-246X.1996.tb05270.x
  37. Lachenbruch, A. H. (1968) The effect of two-dimensional topography on superficial thermal gradients. U.S. Geol. Surv. Bull., 1203 E, U.S. Geological Survey
  38. Lachenbruch, A. H., and Brewer, M. C. (1959) Dissipation of the temperature effect cif drilling a well in arctic Alaska. Geological Survey Bulletin, 1083 C, D.S. Geological Survey
  39. Lachenbruch, A., and Marshall, B. V. (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science, v. 234, p. 689-696 https://doi.org/10.1126/science.234.4777.689
  40. Lane, E. C. (1923) Geotherms of the Lake Superior copper country. J. Geol., v. 42, p. 113-122 https://doi.org/10.1086/624142
  41. Lees, C. H. (1910) On the shapes of the isogeotherms under mountain ranges in radio-active districts. Proc. R. Soc. A., v. 83, p. 339-346
  42. Lewis, T. J., and Wang, K. (1992) Influence of terrain on bedrock temperatures, Palaeogeog. Palaeoclimatol. Palaeoecol., v. 98, p. 87-100 https://doi.org/10.1016/0031-0182(92)90190-G
  43. Lewis, T. J., and Wang, K. (1998) Geothermal evidence for deforestation induced warming: Implications for the climate impact of land development. Geophys. Res. Lett., v. 25, p. 535-538
  44. Majorowicz, J. A., Skinner, W. K., and Safanda, J., (2004) Large ground warming in the Canadian Arctic inferred from inversions of temperature logs. Earth and Planetary Science Letters. v. 221, p. 15-25 https://doi.org/10.1016/S0012-821X(04)00106-2
  45. Mansure, A. J. and Reiter, M. (1979) A vertical ground water movement correction for heat flow. J. Geophys. Res., v. 84, p. 3490-3496 https://doi.org/10.1029/JB084iB07p03490
  46. Mareschal, J.-C., and Vasseur, G. (1992) Ground temperature history from two deep boreholes in Central France. Paleogeog. Paleoclimat. Paleoecol., v. 98, p. 185-192 https://doi.org/10.1016/0031-0182(92)90196-C
  47. Okubo, Y., Kim, H.-C., Uchida, Y., and Safanda, J. (2002) Borehole data and climate reconstruction in Korea, in GeothermaV Dendrochronological Paleoclimate Reconstruction across Eastern Margin of Eurasia. Edited by M. Yamano, T. Nagao, and T. Sweda, Proceedings 2002 International Matsuyama Workshop
  48. Pollack, H. N., and Chapman, D. S. (1993) Underground . records of changing climate. Scientific American, June, p. 44-50
  49. Pollack, H. N., Demezhko, D. Y., Duchkov, A. D., Golovanova, 1. v., Huang, S., Shchapov, V. A., and Smerdon, J. E. (2003) Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures. J. Geophys. Res., v. 108, doi: 10.1029/2002]8002154
  50. Pollack, H. N., Huang, S., and Shen, P. Y. (1998) Climate change record in subsurface temperatures: A global perspective. Science, v. 282, p. 279-281 https://doi.org/10.1126/science.282.5387.279
  51. Pribnow, D., Williams, C. F., and Burkhardt, H. (1993) Well log derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys. Res. Lett., v. 20, p. 1155-1158 https://doi.org/10.1029/93GL00480
  52. Putnam S. N. and Chapman, D. S. (1996) A geothermal climate change observatory: First year results from Emigrant Pass in northwest Utah.J Geophys. Res., v. 101, p. 21877-21890 https://doi.org/10.1029/96JB01903
  53. Rajver, D., Safanda, J.. and Shen, P. Y. (1998) The climate record inverted from borehole temperatures in Slovenia. Tectonophysics, v. 291, p. 263-276 https://doi.org/10.1016/S0040-1951(98)00045-6
  54. Safanda,J.. and Rajver, D. (2001) Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia. Global and Planetary Change, v. 29, p. 241-257 https://doi.org/10.1016/S0921-8181(01)00093-5
  55. Sebagenzi, M. N., Vasseur, G., and Louis, P. (1992) Recent warming in southeastern Zaire (Central Africa) inferred from disturbed geothermal gradients. Paleogeog. Paleoclimat. Paleoecol., v. 98, p. 209-217 https://doi.org/10.1016/0031-0182(92)90199-F
  56. Shen, P. Y., Beck, A. E. (1991) Least squares inversion in borehole temperature measurements in functional space. J. Geophys. Res., v. 96, P.1996-19979
  57. Shen, P. Y., Pollack, H. N., and Huang, S. (1996) Iference of ground surface temperature history from borehole temperature data: a comparison of two inverse methods. Global Planetary Change, v. 14, p. 49-57 https://doi.org/10.1016/0921-8181(96)00004-5
  58. Taniguchi, M., and Uemura, T. (2005) Effects of urbanization and groundwater flow on the subsurface temperature in Osaka, Japan. Physics and the Earth and Planetary Interiors, v. 152, p. 305-313 https://doi.org/10.1016/j.pepi.2005.04.006
  59. Vasseur, G., Bernard, Ph., Van de Meulebrouck, J., Kast, Y., and Jolivet, J. (1983) Holocene paleotemperatures deduced from geothermal measurements. Paleo-geogr. Paleoclimatol., Paleoecol., v. 43, p. 237-259 https://doi.org/10.1016/0031-0182(83)90013-5
  60. Wang, K., and Lewis, T. J. (1992) Geothermal evidence from Canada for a cold period before recent climatic warming. Science, v. 256, p. 1003-1005 https://doi.org/10.1126/science.256.5059.1003
  61. Yamano, M., and Goto S. (2005) Long-term monitoring of the temperature profile in a deep borehole: Temperature variations associated with water injection, experiments and natural groundwater discharge. Physics and the Earth and planetary interiors, p. 326-334