Iron Phosphate Coating on Pyrite Surface for Reduction of Acid Rock Drainage

산성배수 발생저감을 위한 황철석 표면의 철인산염 피막형성 연구

  • Lee Gyoo Ho (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Jae Gon (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Tack Hyun (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Jin-Soo (Korea Institute of Geoscience and Mineral Resources)
  • 이규호 (한국지질자원연구원 지질환경재해연구부) ;
  • 김재곤 (한국지질자원연구원 지질환경재해연구부) ;
  • 김탁현 (한국지질자원연구원 지질환경재해연구부) ;
  • 이진수 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2006.02.01

Abstract

Acid drainage occurs when sulfide minerals are exposed to an oxidizing environment. The objective of this study was to examine the optimum condition for creating a phosphate coating on standard pyrite surfaces for reduction of pyrite oxidation. The solution of $10^{-2}M\;KH_2PO_4,\;10^{-2}M\;H_2O_2$ was identified as the best phosphate coating agent for the reduction of pyrite oxidation. The formation of an iron phosphate coating on pyrite surfaces was confirmed with ore microscope and scanning electron microscope equipped with energy dispersive spectroscopy. The temperature did not significantly affect the formation of phosphate coating on the surface of pyrite. However, the phosphate coating was less stable at higher temperature than at lower temperature. The phosphate coating was quitely stable at wide range of pH and $H_2O_2$ concentration. The less than $3.4\%$ of phosphate was dissolved at pH 2.79 and 10.64 and less than $1.0\%$ of phosphate was dissolved at 0.1M $H_2O_2$. On the basis of these results, the phosphate coating can effectively reduce the negative environmental impact of acid rock drainage.

암석 또는 광미시료에 포함되어 있는 황철석의 산화에 의해 발생하는 산성배수를 저감하기 위하여 황철석 표면에 철인산염 피막을 형성시킬 수 있다. 첫 단계로 표준황철석을 이용한 실내실험을 통하여 최적의 피막형성 조건을 도출하였다. 피막형성제와 황철석을 24시간 반응시킬 때 최적조건은 $10^{-2}M\;KH_2PO_4,\;10^{-2}M\;H_2O_2$, PH 6으로 결정되었으며, 이 조건으로 황철석을 피막처리한 후 반사현미경, 주사전자현미경, 에너지분산분광기로 피막의 형성을 확인하였다. 피막의 내구성을 검증하기 위하여 온도 pH, 산화제의 농도변화에 따른 인산염의 용출을 조사한 결과, $4^{\circ}C$$70^{\circ}C$에서 온도의 영향은 거의 없었으며, 강산 또는 강알칼리 환경에서 $3.4\%$미만, 산화제의 농도별 조건하에서 $1.0\%$미만의 인산염이 피막으로부터 용출되었다. 실험 결과는 암석 또는 광미시료의 철인산염 피막형성 연구의 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. 이규호, 김재곤, 이진수, 전철민, 박삼규, 김탁현, 고경석, 김통권 (2005a) 건설현장 절취사면의 산성암반배수 발생특성과 잠재먹 산발생능력 평가. 자원환경지질, V 38, p. 91-99
  2. 이규호, 김재곤, 박삼규, 이진수, 전철민, 김탁현 (2005b) 산성암반배수에 의한 절취사면 구조물의 피해현황과 평가. 한국지반공학회논문집 v. 21, p. 83-92
  3. Berner, R.A. (1967) Sedimentary pyrite formation: an update. Am. J. Sci., v. 256, p. 773-785
  4. Brown, A.D. and Jurinak, J.J. (1989) Mechanism of pyrite oxidation in aqueous mixtures.J. Environ. Qua!., v. 18, p. 545-550 https://doi.org/10.2134/jeq1989.00472425001800040028x
  5. Erickson, P.M., Kleinmann, R.L.P. and Onysko, S.J, (1985) Control of acid mine drainage by application of bactericidal materials. In: control of Acid Mine Drainage. USDI, Bureau of Mines, Pittsburgh, PA, pp. 2534, Bureau of Mines Information Circular 9027
  6. Evangelou, Y.P. (1995) Pyrite oxidation and its contro!. CRC Press, Inc
  7. Evangelou, Y.P., Seta, A.K. and Holt, A. (1998) Potential role of bicarbonate during pyrite oxidation. Environ. Sci. Techno!., v. 32, p. 2084-2091 https://doi.org/10.1021/es970829m
  8. Evangelou, Y.P. (2001) Pyrite microencapsulation technologies: Principles and potential field application. Ecological Engineering, v. 12, p. 165-178
  9. Fornasiero, D., Eijt, Y. and Ralston, J. (1992) An electrokinetic study of pyrite oxidation. Colloid. Surf., v. 62, p. 63-73 https://doi.org/10.1016/0166-6622(92)80037-3
  10. Hood, Y.A. (1991) The kinetics of pyrite oxidation in marine systems. Ph.D. Thesis, University of Miami, FL
  11. Jaynes, D.B., Rogowski, A.S. and Pionke, H.B. (1984) Acid mine drainage from reclaimed coal strip mines. 1. Model description. Water Resources Res., v. 20, p. 233-242 https://doi.org/10.1029/WR020i002p00233
  12. Lindsay, W.L. (1979) Chemical equilibria in soils. John Wiley & Sons, New York
  13. Moses, C.O., Nordstrom, D.K., Herman, J.S. and Mills, A. (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim. Cosmochim. Acta, v. 55, p. 395-402
  14. Moses, C.O. and Herman, J. (1991) Pyrite oxidation at circumneutral pH. Geochim. Cosmochim. Acta, v. 55, p. 471-482 https://doi.org/10.1016/0016-7037(91)90005-P
  15. Nyavor, K. and Egiebor, N.O. (1995) Control of pyrite oxidation by phosphate coating. The Science of the Total Environment, v. 162, p. 225-237 https://doi.org/10.1016/0048-9697(95)04467-F
  16. Nicholson, R.Y., Gillham, R.W. and Reardon, E. (1988) Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim. Cosmochim. Acta, v. 52, p. 1077-1085 https://doi.org/10.1016/0016-7037(88)90262-1
  17. Nicholson, R.Y., Gillham, R.W. and Reardon, E. (1990) Pyrite oxidation in carbonate-buffered solution: 2. Rate control by oxide coatings. Geochim. Cosmochim. Acta, v. 54, p. 395-402 https://doi.org/10.1016/0016-7037(90)90328-I
  18. Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Hossner, L.R, Kittrick, J.A., Fanning, D.E (Eds.), Acid Manipulation of Soil Minerals. Soil Science Society of America Press, Madison, p. 46
  19. Scharer, J.M., Garga, Y., Smith, R. and Halbert, B.E. (1991) Use of steady state models for assessing acid generation in pyritic mine tailings. In: The Second International Conference on the Abatement of Acid Drainage, v. 2, September 16-18, Montreal, Canada, p. 211
  20. Singer, P.C. and Stumm, W. (1970) Acidic mine drainage: the rate-determining step. Science, v. 167, p. 11211123 https://doi.org/10.1126/science.167.3921.1121
  21. Zhang, Y.L. and Evangelou, Y.P. (1996) Influence of iron oxide forming conditions on pyrite oxidation. Soil Science, v. 161, p. 852-864 https://doi.org/10.1097/00010694-199612000-00005
  22. Zhang, Y.L. and Evangelou, Y.P. (1998) Formation of ferric hydroxides-silica coatings on pyrite and its oxidation behavior. Soil Science, v. 163, p. 53-62 https://doi.org/10.1097/00010694-199801000-00008