Development of $^{99m}Tc$-Transferrin as an Imaging Agent of Infectious Foci

감염병소 영상을 위한 $^{99m}Tc$-Transferrin 개발

  • Kim, Seong-Min (Departments of Nuclear Medicine, Chungnam National University School of Medicine) ;
  • Song, Ho-Chun (Chonnam National University Medical School)
  • 김성민 (충남대학교 의과대학 핵의학교실) ;
  • 송호천 (전남대학교 의과대학 핵의학교실)
  • Published : 2006.06.30

Abstract

Purpose: Purpose of this study is to synthesize $^{99m}Tc$-labeled transferrin for injection imaging and to compare it with $^{67}Ga$-titrate for the detection of infectious foci. Materials and methods: Succinimidyl 6-hydrazino-nicotinate hydrochloride-chitosan-transferrin (Transferrin) was synthesized and radiolabeled with $^{99m}Tc$. Labeling efficiencies of $^{99m}Tc$-Transferrin were determined at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr. Biodistribution and imaging studies with $^{99m}Tc$-Transferrin and $^{67}Ga$-citrate were performed in a rat abscess model induced with approximately $2{\times}10^8$ colony forming unit of Staphylococcus aureus ATCC 25923. Results: Successful synthesis of Transferrin was confirmed by mass spectrometry. Labeling efficiency of $^{99m}Tc$-Transferrin was $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr, respectively. The injected dose per tissue gram of $^{99m}Tc$-Transferrin was $0.18{\pm}0.01\;and\;0.18{\pm}0.01$ in the lesion and $0.05{\pm}0.01\;and\;0.04{\pm}0.01$ in the normal muscle, and lesion-to-normal muscle uptake ratio was $3.7{\pm}0.6\;and\;4.7{\pm}0.4$ at 30 min and 3 hr, respectively. On image, lesion-to-background ratio of $^{99m}Tc$-Transferrin was $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45\;and\;5.59{\pm}0.40$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 10 hr and those of $^{67}Ga$-citrate was $3.06{\pm}0.84,\;4.12{\pm}0.54\;and\;4.55{\pm}0.74 $ at 2 hr, 24 hr and 48 hr, respectively. Conclusion: Transferrin is successfully labeled with $^{99m}Tc$, and its labeling efficiency was higher than 95% and stable for 8 hours. $^{99m}Tc$-Transferrin scintigraphy showed higher image quality in shorter time compared to $^{67}Ga$-citrate image. $^{99m}Tc$-transferrin is supposed to be useful in the detection of the infectious foci.

목적 : 본 연구의 목적은 $^{99m}Tc$-방사성표지 트렌스페린 ($^{99m}Tc$-transferrin)을 개발하여 감염/염증병소의 진단에 이용할 수 있는지 알아보고, 이를 $^{67}Ga$-Citrate 영상과 비교하고자 하였다. 대상 및 방법 : Succinimidyl 6-hydrazino-nicotinate hydrochloride -chitosan -transferrin (Transferrin)을 합성하고, 여기에 $^{99m}Tc$ 방사성 표지를 시행하였다. $^{99m}Tc$-transferrin의 방사성표지효율은 표지 후 10분, 30분, 1시간, 2시간, 4시간, 8시간에 측정하였다. 포도상구균(ATCC 25923, $2{\times}10^8$ colony forming unite, 0.2 ml)을 접종한 쥐농양모델에서 $^{99m}Tc$-transferrin과 $^{67}Ga$-citrate의 생체내 분포를 평가하고 영상 검사를 실시하였다. 결과: 질량분석계를 이용하여 Transferrin이 성공적으로 제조되었음을 알 수 있었다. $^{99m}Tc$-transferrin의 방사성표지효율은 10분, 30분, 1시간, 2시간, 4시간, 8시간에 각각 $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ 이었다. $^{99m}Tc$-transferrin의 단위섭취량은 감염병소에서 $0.18{\pm}0.01\;and\;0.18{\pm}0.01$, 정상근육에서 $0.05{\pm}0.01\;and\;0.04{\pm}0.01$이었고, 감염병소 대 정상근육 섭취비는 30분과 3시간에 각각 $3.7{\pm}0.6\;and\;4.7{\pm}0.4$이었다. $^{99m}Tc$-transferrin 영상에서 10분, 30분, 1시간, 2시간, 4시간 그리고 10시간에서의 병소/배후방사능비는 각각 $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45$ 그리고 $5.59{\pm}0.40$이었고, $^{67}Ga$-citrate의 경우 2시간, 24시간, 48시간에 $3.06{\pm}0.84,\;4.12{\pm}0.54\;4.55{\pm}0.74 $이었다. 결론 : Transferrin에 $^{99m}Tc$을 이용한 방사성표지가 성공적으로 이루어졌고, $^{99m}Tc$-transferrin의 표지효율은 8시간까지 95% 이상의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Sheldon WH, Mildvan D, Allen JC. Some serum protein and cellular constituents of inflammatory lesions. Collection of exudates in a chamber adhered over skin wounds of rabbits. J Exp Med 1967;128:113-33
  2. Marx JJ. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol 2002;15: 411-26 https://doi.org/10.1053/beha.2002.0001
  3. Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002;22:225-50 https://doi.org/10.1002/med.10008
  4. Sun H, Li H, Sadler PJ. Transferrin as a metal ion mediator. Chem Rev 1999;99:2817-42 https://doi.org/10.1021/cr980430w
  5. Clausen J, Edeling CJ, Fogh J. $^{67}Ga$ binding to human serum proteins and tumor components. Cancer Res 1974;34:1931-7
  6. Lavender JP, Lowe J, Barker JR. Ga-67 citrate scanning in neoplastic and inflammatory lesions. Br J Radiol 1971;44:361-6 https://doi.org/10.1259/0007-1285-44-521-361
  7. Staab EV, McCartney WH. Role of gallium-67 in inflammatory disease. Semin Nucl Med 1978;8:219-34 https://doi.org/10.1016/S0001-2998(78)80030-0
  8. Alazraki NP. Gallium-67 imaging in infection. In: Early PJ, Sode DB, editors. Principles and practice of nuclear medicine, 2nd Ed. St. Louis: Mosby; 1995. p.702-13
  9. Peters AM. The use of nuclear medicine in infections. Br J Radiol 1998;71:252-61 https://doi.org/10.1259/bjr.71.843.9616233
  10. Becker B, Meller J. The role of nuclear medicine in infection and inflammation. Lancet Infect Dis 2001;1:326-33 https://doi.org/10.1016/S1473-3099(01)00146-3
  11. Goldsmith SJ, Palestro CJ, Vallabhajosula S. Infectious disease. In: Wagner HN, Szabot Z, Buchanan J, editors. Principles of Nuclear medicine. 2nd Ed. Philadelphia: W.B. Saunders Company; 1995. p. 729-30
  12. McIntyre PA, Larson SM, Eikman EA, Colman M, Scheffel U, Hodkinson BA. Comparison of the metabolism of iron-labeled transferrin (Fe-TF) and indium-labeled transferrin (In-TF) by the erythropoietic marrow. J Nucl Med 1974;15:856-62
  13. Rain JD, Najean Y, Billotey C. Bone marrow scintigraphy as a useful method for estimating the physiological status of bone marrow and spleen in polycythaemia vera. Leuk Lymphoma 1996;22(Suppl):105-10 https://doi.org/10.3109/10428199609074367
  14. Binswanger RO, Rosler H, Noelpp U, Matter L, Haertel M. The bedside determination of extravascular lung water: a non-invasive double indicator technique using $^{123}I$-antipyrine, $^{113m}In$-transferrin and external counting. Eur J Nucl Med 1978;3:109-14
  15. Mintun MA, Dennis DR, Welch MJ, Mathias CJ, Schuster DP. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin. J Nucl Med 1987;28:1704-16
  16. Berry CR, Guilford WG, Koblik PD, Hornof WH, Fisher P. Scintigraphic evaluation of four dogs with protein-losing enteropathy using $^{111}indium$-labeled transferrin. Vet Radiol Ultrasound 1997;38: 221-5 https://doi.org/10.1111/j.1740-8261.1997.tb00844.x
  17. Prost AC, Anakok M, Aurengo A, Salomon JC, Legrand JC, Rosselin G. Tissue distribution of $^{131}I$-radiolabeled transferrin in the athymic nude mouse: localization of a human colon adenocarcinoma HT-29 xenograft. Int J Rad Appl Instrum B 1990;17:209-16 https://doi.org/10.1016/0883-2897(90)90149-U
  18. Goodwin DA, Goode R, Brown L, Imbornone CJ. $^{111}In$-labeled transferrin for the detection of tumors. Radiology 1971;100:175-9 https://doi.org/10.1148/100.1.175
  19. Aloj L, Carson RE, Lang L, Herscovitch P, Eckelman WC. Measurement of transferrin receptor kinetics in the baboon liver using dynamic positron emission tomography imaging and [$^{18}F$]holo-transferrin. Hepatology 1997;25:986-90 https://doi.org/10.1002/hep.510250432
  20. Abrams MJ, Juweid M, tenKate CI, Schwartz DA, Hauser MM, Gaul FE, et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990;31:2022-8
  21. Claessens RA, Boerman OC, Koenders EB, Oyen WJ, van der Meer JW, Corstens FH. Technetium-99m labelled hydrazinonicotinamido human non-specific polyclonal immunoglobulin G for detection of infectious foci: a comparison with two other technetium-labelled immunoglobulin preparations. Eur J Nucl Med 1996;23:414-21 https://doi.org/10.1007/BF01247370
  22. Laverman P, Dams ET, Oyen WJ, Storm G, Koenders EB, Prevost R, et al. A novel method to label liposomes with ${99m}Tc$ by the hydrazino nicotinyl derivative. J Nucl Med 1999;40:192-7
  23. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther 2001;8:28-40 https://doi.org/10.1038/sj.gt.3301351
  24. Kircheis R, Kichler A, Wallner G, Kursa M, Ogris M, Felzmann T, et al. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther 1997;4:409-18 https://doi.org/10.1038/sj.gt.3300418
  25. Peter J, Unverzagt C, Engel WD, Renauer D, Seidel C, Hosel W. Identification of carbohydrate deficient transferrin forms by MALDI-TOF mass spectrometry and lectin ELISA. Biochim Biophys Acta 1998;1380:93-101 https://doi.org/10.1016/S0304-4165(97)00135-9
  26. Rojas-Burke J. Health officials reacting to infection mishaps. J Nucl Med 1992;23:13N-14N, 27N
  27. Kaim A, Maurer T, Ochsner P, Jundt G, Kirsch E, Muller-Brand J. Chronic compilcated osteomyelitis of the appendicular skeleton; diagnosis with technetium-99m labeled monoclonal antigranulocyte antibody-immunoscintigraphy. Eur J Nucl Med 1997;24:732-738 https://doi.org/10.1007/BF00879660
  28. Kobayashi H, Kim IS, Drumm D. Favourable effects of glycolate conjugation on the biodistribution of humanized anti-Tac Fab fragment. J Nucl Med 1999;40:837-45
  29. Kim IS, Yoo TM, Kobayashi H, Kim MK, Le N, Wang QC, et al. Chemical modification to reduce renal uptake of disulfied-bonded various region fragment of anti-Tac monoclonal antibody labeled with ${99m}Tc$. Bioconjugate Chem 1999;10:447-53 https://doi.org/10.1021/bc980129m