Screening from the Genome Databases: Novel Epoxide Hydrolase from Caulobacter crescentus

  • HWANG SEUNGHA (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • HYUN HYEJIN (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • LEE BYOUNGJU (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • PARK YOUNGSEUB (Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • CHOI CHAYONG (School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Interdisciplinary Program for Biochemical Engineering and Biotechnology, College of Engineering, Seoul National University) ;
  • HAN JIN (Department of Molecular Physiology and Biophysics, College of Medicine, Inje University) ;
  • JOO HYUN (Department of Molecular Physiology and Biophysics, College of Medicine, Inje University)
  • Published : 2006.01.01

Abstract

The genome sequences from several microbes have led to the discovery of numerous open reading frames of unknown functionality. The putative bacterial epoxide hydrolase (EH) genes selected from the genome databases were examined for their activities toward various epoxides. Among the nine open reading frames (ORFs) from four microbial species, the ORF from Caulobacter crescentus showed an epoxide hydrolase activity. The kinetic resolution, using C. crescentus EH (CCEH) of the aryl epoxides such as styrene oxide, could be performed more efficiently than short aliphatic epoxides. The resolution of racemic indene oxide, which could previously be resolved only by fungal epoxide hydrolases, was effectively accomplished by CCEH.

Keywords

References

  1. Arand, M., A. Cronin, F. Oesch, S. Mowbray, and T. A. Jones. 2003. The telltale structures of epoxide hydrolases. Drug Metab. Rev. 35: 365-383 https://doi.org/10.1081/DMR-120026498
  2. Argiriadi, M. A., C. Morisseau, B. D. Hammock, and D. W. Christianson. 1999. Detoxification of environmental mutagens and carcinogens: Structure-based mechanism and evolution of liver epoxide hydrolase. FASEB J. 13: A1561-A1561
  3. Carter, S. F. and D. J. Leak. 1995. The isolation and characterisation of a carbocyclic epoxide-degrading Corynebacterium sp. Biocatal. Biotransform. 13: 111-129 https://doi.org/10.3109/10242429509015217
  4. Choi, W. J., E. C. Huh, H. J. Park, E. Y. Lee, and C. Y. Choi. 1998. Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis. Biotechnol. Technol. 12: 225-228 https://doi.org/10.1023/A:1008825508904
  5. Choi, W. J., C. Y. Choi, J. A. M. De Bont, and C. A. Weijers. 2000. Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor. Appl. Microbiol. Biotechnol. 54: 641-646 https://doi.org/10.1007/s002530000451
  6. Fretland, A. J. and C. J. Omiecinski. 2000. Epoxide hydrolases: Biochemistry and molecular biology. Chem-Biol. Interact. 129: 41-59 https://doi.org/10.1016/S0009-2797(00)00197-6
  7. Mischitz, M., W. Kroutil, U. Wandel, and K. Faber. 1995. Asymmetric microbial hydrolysis of epoxides. Tetrahedron Asymmetry 6: 1261-1272 https://doi.org/10.1016/0957-4166(95)00158-L
  8. Nardini, M., I. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B. Janssen, and B. W. Dijkstra. 1999. The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1 - an enzyme to detoxify harmful epoxides. J. Biol. Chem. 274: 14579-14586 https://doi.org/10.1074/jbc.274.21.14579
  9. Osprian, I., W. Kroutil, M. Mischitz, and K. Faber. 1997. Biocatalytic resolution of 2-methyl-2-(aryl)alkyloxiranes using novel bacterial epoxide hydrolases. Tetrahedron Asymmetry 8: 65-71 https://doi.org/10.1016/S0957-4166(96)00493-4
  10. PedragosaMoreau, S., A. Archelas, and R. Furstoss. 1996. Microbiological transformations. 32. Use of epoxide hydrolase mediated biohydrolysis as a way to enantiopure epoxides and vicinal diols: Application to substituted styrene oxide derivatives. Tetrahedron 52: 4593-4606 https://doi.org/10.1016/0040-4020(96)00135-4
  11. Spelberg, J. H. L., R. Rink, R. M. Kellogg, and D. B. Janssen. 1998. Enantioselectivity of a recombinant epoxide hydrolase from Agrobacterium radiobacter. Tetrahedron Asymmetry 9: 459-466 https://doi.org/10.1016/S0957-4166(98)00003-2
  12. Tang, Y. F., J. H. Xu, Q. Ye, and B. Schulze. 2001. Biocatalytic preparation of (S)-phenyl glycidyl ether using newly isolated Bacillus megaterium ECU1001. J. Mol. Catal. B Enzym. 13: 61-68 https://doi.org/10.1016/S1381-1177(00)00230-7
  13. Visser, H., C. Weijers, A. J. J. van Ooyen, and J. C. Verdoes. 2002. Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium. Biotechnol. Lett. 24: 1687-1694 https://doi.org/10.1023/A:1020613803342
  14. Weijers, C. A. G. M. and J. A. M. de Bont. 1999. Epoxide hydrolases from yeasts and other sources: Versatile tools in biocatalysis. J. Mol. Catal. B Enzym. 6: 199-214 https://doi.org/10.1016/S1381-1177(98)00123-4
  15. Zhang, J. Y., J. Reddy, C. Roberge, C. Senanayake, R. Greasham, and M. Chartrain. 1995. Chiral bio-resolution of racemic indene oxide by fungal epoxide hydrolases. J. Ferment. Bioeng. 80: 244-246 https://doi.org/10.1016/0922-338X(95)90823-I
  16. Zou, J. Y., B. M. Hallberg, T. Bergfors, F. Oesch, M. Arand, S. L. Mowbray, and T. A. Jones. 2000. Structure of Aspergillus niger epoxide hydrolase at 1.8 angstrom resolution: Implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8: 111- 122 https://doi.org/10.1016/S0969-2126(00)00087-3