Proteases and Protease Inhibitors Produced in Streptomycetes and Their Roles in Morphological Differentiation

  • KIM DAE WI (School of Biological Sciences, Seoul National University) ;
  • KANG SUNG GYUN (Korea Ocean Research and Development Institute) ;
  • KIM IN SEOP (Department of Biology, Hannam University) ;
  • LEE BYONG KYU (Department of Research Administration, Yuhan Research Institute) ;
  • RHO YONG TAIK (Department of Genetic Engineering, Youngdong University) ;
  • LEE KYE JOON (School of Biological Sciences, Seoul National University)
  • Published : 2006.01.01

Abstract

Streptomycetes are Gram-positive microorganisms producing secondary metabolites through unique physiological differentiation [4]. The microbes show unusual morphological differentiation to form substrate mycelia, aerial mycelia, and arthrospores on solid medium [19]. Substrate mycelium growth is sustaining with sufficient nutrients in the culture medium. The concentration of a specific individual substrate in the culture environment is the most important extracellular factor allowing vegetative mycelia growth, where extracellular hydrolytic enzymes participate in the utilization of waterinsoluble substrates. However, with starvation of nutrients in the culture medium, the vegetative mycelia differentiate to aerial mycelia and spores. It has been considered that shiftdown of essential nutrients for mycelia growth is the most important factor triggering morphological and physiological differentiation in Streptomyces spp. Since proteineous macromolecule compounds are the major cellular components, these are faced to endogenously metabolize following a severe depletion of nitrogen source in culture nutrients (Fig. 1). Various proteases were identified of which production was specifically related with the phase of mycelium growth and also morphological differentiation. The involvement of proteases and protease inhibitor is reviewed as a factor explaining the mycelium differentiation in Streptomyces spp.

Keywords

References

  1. Almog, O., H. M. Greenblatt, A. Spungin, D. Ben-Meir, S. Blumberg, and G. Shoham. 1993. Crystallization and preliminary crystallographic analysis of Streptomyces griseus aminopeptidase. J. Mol. Biol. 230: 342-344 https://doi.org/10.1006/jmbi.1993.1146
  2. Arima, J., M. Iwabuchi, and T. Hatanaka. 2004. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus. Biochem. Biophys. Res. Commun. 317: 531-538 https://doi.org/10.1016/j.bbrc.2004.03.082
  3. Avbelj, F., J. Moult, D. H. Kitson, M. N. James, and A. T. Hagler. 1990. Molecular dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, Streptomyces griseus protease A. Biochemistry 29: 8658- 8678 https://doi.org/10.1021/bi00489a023
  4. Baltz, R. H. 1998. Genetic manipulation of antibiotic-producing Streptomyces. Trends Biochem. Sci. 6: 76-83
  5. Barbosa, J. A., R. C. Garratt, and J. W. Saldanha. 1993. A structural model for the glutamate-specific endopeptidase from Streptomyces griseus that explains substrate specificity. FEBS Lett. 324: 45-50 https://doi.org/10.1016/0014-5793(93)81529-9
  6. Bauer, C. A. 1976. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'l. Biochim. Biophys. Acta 438: 495-502 https://doi.org/10.1016/0005-2744(76)90265-5
  7. Bauer, C. A. 1980. Active centers of alpha-chymotrypsin and Streptomyces griseus proteases 1 and 3. S2-P2 enzyme-substrate interaction. Eur. J. Biochem. 105: 565-570 https://doi.org/10.1111/j.1432-1033.1980.tb04533.x
  8. Bauer, C. A., R. C. Thompson, and E. R. Blout. 1976. The active centers of Streptomyces griseus protease 3, alpha-chymotrypsin, and elastase: Enzyme-substrate interactions close to the scissile bond. Biochemistry 15: 1296-1299 https://doi.org/10.1021/bi00651a020
  9. Ben-Meir, D., A. Spungin, R. Ashkenazi, and S. Blumberg. 1993. Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur. J. Biochem. 212: 107-112 https://doi.org/10.1111/j.1432-1033.1993.tb17639.x
  10. Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphey, K. Oliver, S. O'Niel, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
  11. Binnie, C., M. J. Butler, J. S. Aphale, R. Bourgault, M. A. DiZonno, P. Krygsman, L. Liao, E. Walczyk, and L. T. Malek. 1995. Isolation and characterization of two genes encoding proteases associated with the mycelium of Streptomyces lividans 66. J. Bacteriol. 177: 6033-6040 https://doi.org/10.1128/jb.177.21.6033-6040.1995
  12. Bormatova, M. E., N. M. Ivanova, M. P. Iuspova, T. L. Voiushina, I. A. Surova, G. G. Chestukhina, and V. M. Stepanov. 1996. Proteolytic enzymes from Streptomyces fradiae: A metalloendopeptidase, subtilisin-like, and trypsin-like proteinases. Biokhimiia 61: 344-356
  13. Butler, M. J., C. C. Davey, P. Krygsmann, E. Walczyk, and L. T. Malek. 1992. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: A novel neutral protease gene with an adjacent divergent putative regulatory gene. Can. J. Microbiol. 38: 912-920 https://doi.org/10.1139/m92-148
  14. Butler, M. J., A. Bergeron, G. Soostmeyer, T. Zimmy, and L. T. Malek. 1993. Cloning and characterisation of an aminopeptidase P-encoding gene from Streptomyces lividans. Gene 123: 115-119 https://doi.org/10.1016/0378-1119(93)90549-I
  15. Butler, M. J., C. Binnie, M. A. DiZonno, P. Krygsmann, G. A. Soltes, G. Soostmeyer, E. Walezyk, and L. T. Malek. 1995. Cloning and characterization of a gene encoding a secreted tripeptidyl aminopeptidase from Streptomyces lividans 66. Appl. Environ. Microbiol. 61: 3145-3150
  16. Butler, M. J., J. S. Aphale, C. Binnie, M. A. DiZonno, P. Krygsman, G. Soltes, E. Walczyk, and L. T. Malek. 1996. Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisin $BPN^1$. Appl. Microbiol. Biotechnol. 45: 141-147 https://doi.org/10.1007/s002530050662
  17. Chang, P. C., T. C. Kuo, A. Tsugita, and Y. H. Lee. 1990. Extracellular metalloprotease gene of Streptomyces cacaoi: Structure, nucleotide sequence and characterization of the cloned gene product. Gene 88: 87-95 https://doi.org/10.1016/0378-1119(90)90063-W
  18. Chang, P. C. and Y. H. Lee. 1992. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi. J. Biol. Chem. 267: 3952-3958
  19. Chater, K. F. 1988. Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 1465-1478
  20. Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15 https://doi.org/10.1046/j.1365-2958.2003.03476.x
  21. Fernandez, M. and J. Sanchez. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH7451. Microbiology 148: 405-412 https://doi.org/10.1099/00221287-148-2-405
  22. Gibb, G. D. and W. R. Strohl. 1988. Physiological regulation of protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187-190 https://doi.org/10.1139/m88-034
  23. Greenblatt, H. M., O. Almog, B. Maras, A. Spungin-Bialik. D. Barra, S. Blumberg, and G. Shoham. 1997. Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution. J. Mol. Biol. 265: 620-636 https://doi.org/10.1006/jmbi.1996.0729
  24. Hanada, S., T. Kinoshita, N. Kasai, S. Tsunasawa, and F. Sakiyama. 1995. Complete amino acid sequence of a zinc metalloprotease from Streptomyces caespitosus. Eur. J. Biochem. 233: 683-686 https://doi.org/10.1111/j.1432-1033.1995.683_2.x
  25. Hatanaka, Y., H. Tsunematsu, K. Mizusaki, and S. Makisumi. 1985. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Biochem. Biophys. Acta 832: 274-279 https://doi.org/10.1016/0167-4838(85)90260-2
  26. Jeong, B.C., S. G. Kang, Y. T. Rho, and K. J. Lee. 1992. Submerged spore formation and biosynthesis of extracellular protease in Streptomyces albidoflavus SMF301. Kor. J. Microbiol. 31: 566-572
  27. Kakinuma, A., H. Sugino, N. Moriya, and M. Isono. 1978. Plasminostreptin, a protein proteinase inhibitor produced by Streptomyces antifibrinolyticus. I. Isolation and characterization. J. Biol. Chem. 253: 1529-1537
  28. Kang, S. G., I. S. Kim, Y. T. Rho, and K. J. Lee. 1995. Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomcyes albidoflavus SMF301. Microbiology 141: 3095-3103 https://doi.org/10.1099/13500872-141-12-3095
  29. Kang, S. G., I. S. Kim, J. G. Ryu, Y. T. Rho. and K. J. Lee. 1995. Purification and characterization of trypsin-like protease and metalloprotease in Streptomyces albidoflavus SMF301. J. Microbiol. 33: 307-314
  30. Kang, S. G. and K. J. Lee. 1997. Kinetic analysis of morphological differentiation and protease production in Streptomyces albidoflavus SMF301. Microbiology 143: 2709-2714 https://doi.org/10.1099/00221287-143-8-2709
  31. Kang, S. G., R. G. W. Kenyon, A. C. Ward, and K. J. Lee. 1998. Analysis of the differentiation state in Streptomyces albidoflavus SMF301 by the combination of pyrolysis mass spectrometry and neural network. J. Biotech. 62: 1-10 https://doi.org/10.1016/S0168-1656(98)00034-0
  32. Kato, J., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184: 6016-6025 https://doi.org/10.1128/JB.184.21.6016-6025.2002
  33. Kato, J., W. J. Chi, Y. Ohnishi, S. K. Hong, and S. Horinouhi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295 https://doi.org/10.1128/JB.187.1.286-295.2005
  34. Kato, J., S. Hirano, Y. Ohnishi, and S. Horinouchi. 2005. The Streptomyces subtilisin inhibitor (SSI) gene in Streptomyces coelicolor A(3)2. Biosci. Biotechnol. Biochem. 69: 1624- 1629 https://doi.org/10.1271/bbb.69.1624
  35. Katoh, T., N. Kikuchi, K. Nagata, and N. Yoshida. 1996. A mutant trypsin-like enzyme from Streptomyces fradiae, created by site-directed mutagenesis, improves affinity chromatography for protein trypsin inhibitors. Appl. Microbiol. Biotechnol. 46: 15-21 https://doi.org/10.1007/s002530050777
  36. Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187: 2957-2966 https://doi.org/10.1128/JB.187.9.2957-2966.2005
  37. Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane associated proteome of Streptomyces coelicolor. Microbiology 151: 2707-2720 https://doi.org/10.1099/mic.0.28000-0
  38. Kim, I. S., H. T. Kim, H. S. Lee, and K. J. Lee. 1991. Protease inhibitor production using Streptomyces sp. SMF13. J. Microbiol. Biotech. 1: 288-292 https://doi.org/10.1159/000108856
  39. Kim, I. S., H. T. Kim, A. C. Ward, M. Goodfellow, Y. C. Hah, and K. J. Lee. 1992. Numerical identification of a Streptomyces strain producing thiol protease inhibitor. J. Microbiol. Biotechnol. 2: 220-225
  40. Kim, I. S. and K. J. Lee. 1995. Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141: 1017-1025 https://doi.org/10.1099/13500872-141-4-1017
  41. Kim, I. S. and K. J. Lee. 1995. Nutritional regulation of morphological and physiological defferentiation on surface culture of Streptomyces exfoliatus SMF13. J. Microbiol. Biotechnol. 5: 200-205
  42. Kim, I. S. and K. J. Lee. 1995. Regulation of production of leupeptin, leupeptin inactivation enzyme and trypsin like protease in Streptomyces exfoliatus SMF13. J. Ferment. Bioeng. 80: 434-439 https://doi.org/10.1016/0922-338X(96)80916-0
  43. Kim, I. S. and K. J. Lee. 1995. Kinetic study on the production and degradation of leupeptin in Streptomyces exfoliatus SMF13. J. Biotechnol. 42: 35-44 https://doi.org/10.1016/0168-1656(95)00061-T
  44. Kim, I. S., S. G. Kang, and K. J. Lee. 1995. Physiological importance of trypsin like protease during morphological differentiation of Streptomyces spp. J. Microbiol. 33: 315- 321
  45. Kim, I. S. and K. J. Lee. 1996. Trypsin-like protease in Streptomyces exfoliatus SMF13, as a potential agent for mycelium differentiation. Microbiology 142: 1797-1806 https://doi.org/10.1099/13500872-142-7-1797
  46. Kim I. S., Y. B. Kim, and K. J. Lee. 1998. Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem. J. 331: 539-545 https://doi.org/10.1042/bj3310539
  47. Kim, J. C., S. H. Cha, S. T. Jeong, S. K. Oh, and S. M. Byun. 1991. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem. Biophys. Res. Commun. 181: 707-713 https://doi.org/10.1016/0006-291X(91)91248-B
  48. Kim, J. W., S. G. Kang, Y. T. Rho, and K. J. Lee. 1994. L-Cysteine metabolism and the effects on mycelium growth of Streptomyces albidoflavus SMF301 in submerged culture. J. Microbiol. Biotech. 4: 159-164
  49. Kitadokoro, K., E. Nakamura, M. Tamaki, T. Horii, H. Okamoto, M. Shin, T. Sato, T. Fujiwara, H. Tsuzuki, and N. Yoshida. 1993. Purification, characterization and molecular cloning of an acidic amino acid-specific proteinase from Streptomyces fradie ATCC 14544. Biochim. Biophys. Acta 1163: 149-157 https://doi.org/10.1016/0167-4838(93)90176-R
  50. Kitadokoro, K., H. Tsuzuki, H. Okamoto, and T. Sato. 1994. Crystal structure analysis of a serine proteinase from Streptomyces fradie at 0.16-nm resolution and molecular modeling of an acidic-amino-acid-specific proteinase. Eur. J. Biochem. 224: 735-742 https://doi.org/10.1111/j.1432-1033.1994.00735.x
  51. Kojima, S., I. Kumagai, and K. Miura. 1990. Effect on inhibitory activity of mutation at reaction site P4 of the Streptomyces subtilisin inhibitor, SSI. Protein Engineer. 3: 527-530 https://doi.org/10.1093/protein/3.6.527
  52. Kojima, S., Y. Nishiyama, I. Kumagai, and K. Mirura. 1991. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor. J. Biochem. 109: 377- 382 https://doi.org/10.1093/oxfordjournals.jbchem.a123389
  53. Kojima, S., T. Kumazaki, S. Ishii, and K, Miura. 1998. Primary structure of Streptomyces griseus metalloprotease II. Biosci. Biotechnol. Biochem. 62: 1392-1398 https://doi.org/10.1271/bbb.62.1392
  54. Kreier, V. G., G. N. Rudenskaia, N. S. Landau, S. S. Pokrovskaia, and V. M. Stepanov. 1983. Subtilisin-like proteinase SSPB from Streptomyces spheroides, strain 35. Biokhimiia 48: 1365-1373
  55. Krieger, T. J., D. Bartfeld, D. L. Jenish, and D. Hadary. 1994. Purification and characterization of a novel tripeptidyl aminopeptidase from Streptomyces lividans 66. FEBS Lett. 352: 385-388 https://doi.org/10.1016/0014-5793(94)00988-0
  56. Kumazaki, T., K. Kajiwara, S. Kojima, K. Miura, and S. Ishii. 1993. Interaction of Streptomyces subtilisin inhibitor (SSI) with Streptomyces griseus metallo-endopeptidase II (SGMP II). J. Biochem. 114: 570-575 https://doi.org/10.1093/oxfordjournals.jbchem.a124218
  57. Kuramoto, A., A. Lezhava, S. Taguchi, H. Momose, and H. Kinashi. 1996. The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol. Lett. 139: 37-42 https://doi.org/10.1111/j.1574-6968.1996.tb08176.x
  58. Kurisu, G., T. Kinoshita, A. Sugimoto, A. Nagara, Y. Kai, N. Kasai, and S. Harada. 1997. Structure of the zinc endoprotease from Streptomyces caespitosus. J. Biochem. 121: 304-308 https://doi.org/10.1093/oxfordjournals.jbchem.a021587
  59. Lee, K. J. and Y. T. Rho. 1993. Characteristics of spores formed by surface and submerged cultures of Streptomyces albioflavus SMF 301. J. Gen. Microbiol. 139: 3131-3137 https://doi.org/10.1099/00221287-139-12-3131
  60. Lee, K. J. 1998. Dynamics of morphological and physiological differentiation in actinomycetes group and quantitative analysis of the differentiation. J. Microbiol. Biotechnol. 8: 1-7
  61. Lichenstein, H. S., L. A. Busse, G. A. Smith, L. O. Narhi, M. O. McGinley, M. F. Rohde, J. L. Katzowitz, and M. M. Zukowski. 1992. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene 111: 125-130 https://doi.org/10.1016/0378-1119(92)90613-T
  62. Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: Morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145: 515-525 https://doi.org/10.1083/jcb.145.3.515
  63. Murao, S., S. Sato, and N. Muto. 1972. Studies on microbial alkaline protease inhibitor (SS-I) from Streptomyces albogriseolus S3253. 1. Isolation of alkaline protease inhibitor producing microorganisms. Agric. Biol. Chem. 36: 1737-1744 https://doi.org/10.1271/bbb1961.36.1737
  64. Murao, S. and S. Sato. 1973. SSI, a new alkaline protease inhibitor from Streptomyces albogriseolus S3253. Agric. Biol. Chem. 37: 160-163
  65. Nagamine-Natsuka, Y., S. Norioka, and F. Sakiyama. 1995. Molecular cloning, nucleotide sequence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus. J. Biochem. 118: 338-346 https://doi.org/10.1093/oxfordjournals.jbchem.a124912
  66. Nicieza R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. J. Biol. Chem. 274: 20366-20375 https://doi.org/10.1074/jbc.274.29.20366
  67. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
  68. Olafson, R. W., L. Jurasek, M. R. Carpenter, and L. B. Smillie. 1975. Amino acid sequence of Streptomyces griseus trypsin. Cyanogen bromide fragments and complete sequence. Biochemistry 14: 168-1177
  69. Olafson, R. W. and L. B. Smillie. 1975. Enzymic and physicochemical properties of Streptomyces griseus trypsin. Biochemistry 14: 1161-1167 https://doi.org/10.1021/bi00677a010
  70. Page, M. J., S. L. Wong, J. Hewitt, N. C. Strynadka, and R. T. MacGillivray. 2003. Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 9060-9066 https://doi.org/10.1021/bi0344230
  71. Read, R. J., G. D. Brayer, L. Jurasek, and M. N. James. 1984. Critical evaluation of comparative model building of Streptomyces griseus trypsin. Biochemistry 23: 6570-6575 https://doi.org/10.1021/bi00321a045
  72. Read, R. J. and M. N. James. 1988. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J. Mol. Biol. 200: 523-551 https://doi.org/10.1016/0022-2836(88)90541-4
  73. Rho, Y. T., J. W. Kim, and K. J. Lee. 1990. Effects of culture environments on alkaline protease biosynthesis in Streptomyces sp. Kor. J. Microbiol. 28: 162-168
  74. Rho, Y. T. and K. J. Lee. 1994. Kinetic studies on spore formation of Streptomyces albidoflavus SMF301 in submerged culture. Microbiology 140: 2061-2065 https://doi.org/10.1099/13500872-140-8-2061
  75. Satow, Y., Y. Mitsui, Y. Iitaka, and S. Sato. 1973. Crystallization and preliminary X-ray investigation of a new alkaline protease inhibitor and its complex with subtilisin BPN. J. Mol. Biol. 75: 745-746 https://doi.org/10.1016/0022-2836(73)90306-9
  76. Shin, H. S. and K. J. Lee. 1986. Regulation of extracellular alkaline proteases biosynthesis in a strain of Streptomyces sp. Kor. J. Microbiol. 24: 32-37
  77. Sidhu, S. S., G. B. Kalmar, and T. J. Borgford. 1993. Characterization of the gene encoding the glutamic-acid-specific protease of Streptomyces griseus. Biochem. Cell Biol. 71: 454-461 https://doi.org/10.1139/o93-067
  78. Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1994. Streptomyces griseus proteae C. A novel enzyme of the chymotrypsin superfamily. J. Biol. Chem. 269: 20167- 20171
  79. Stennicke, H. R., J. J. Birktoft, and K. Breddam. 1996. Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus. Protein Sci. 5: 2266-2275 https://doi.org/10.1002/pro.5560051113
  80. Suzuki, M., S. Taguchi, S. Yamada, S. Kojima, K. I. Miura, and H. Momose. 1997. A novel member of the subtilisin-like protease family from Streptomyces albogriseolus. J. Bacteriol. 179: 430-438 https://doi.org/10.1128/jb.179.2.430-438.1997
  81. Suzuki, Y., M. Yabuta, and K. Ohsuye. 1994. Cloning and expression of the gene encoding the glutamic acid-specific protease of Streptomyces griseus ATCC10137. Gene 150: 149-151 https://doi.org/10.1016/0378-1119(94)90875-3
  82. Svendsen, I., M. R. Jensen, and K. Breddam. 1991. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 292: 165-167 https://doi.org/10.1016/0014-5793(91)80859-2
  83. Taguchi, S., H. Kikuchi, M. Suzuki, S. Kojima, M. Terabe, K. Miura, T. Nakase, and H. Momose. 1993. Streptomyces subtilisin inhibitor-like proteins are distributed widely in Streptomycetes. Appl. Environ. Microbiol. 59: 4338-4341
  84. Taguchi, S., A. Odaka, Y. Watanabe, and H. Momose. 1995. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl. Environ. Microbiol. 61: 180-186
  85. Taguchi, S., T. Endo, Y. Naoi, and H. Momose. 1995. Molecular cloning and sequence analysis of a gene encoding an extracellular serine protease from Streptomyces lividans 66. Biosci. Biotechnol. Biochem. 59: 1386-1388 https://doi.org/10.1271/bbb.59.1386
  86. Taguchi, S., M. Suzuki, S. Kojima, and H. Momose. 1995. Streptomyces serine protease (SAM-P20): Recombinat production, characterization, and interaction with endogenous protease inhibitor. J. Bacteriol. 177: 6638-6643 https://doi.org/10.1128/jb.177.22.6638-6643.1995
  87. Taguchi, S., S. Kojima, K. Miura, and H. Momose. 1996. Taxonomic characterization of closely related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol. Lett. 135: 169-173 https://doi.org/10.1111/j.1574-6968.1996.tb07984.x
  88. Taguchi, S., T. Ogawa, T. Endo, and H. Momose. 1997. A gene homologous to the Streptomyces chymotrypsin-like protease (SAM-P20) gene is tandemly located. Biosci. Biotechnol. Biochem. 61: 909-913 https://doi.org/10.1271/bbb.61.909
  89. Takeuchi, Y., Y. Satow, K. T. Nakamura, and Y. Mitsui. 1991. Refined crystal structure of the complex of subtilisin BPN and Streptomyces subtilisin inhibitor at 1.8 resolution. J. Mol. Biol. 221: 309-325
  90. Takeuchi, Y., T. Nonaka, K. T. Nakamura, S. Kojima, and K. I. Miura. 1992. Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. Proc. Natl. Acad. Sci. USA 89: 4407-4411
  91. Tomono A., Y. Tsai, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353 https://doi.org/10.1128/JB.187.18.6341-6353.2005
  92. Tsuyuki, H., K. Kajiwara, A. Fujita, T. Kumazaki, and S. Ishii. 1991. Purification and characterization of Streptomyces griseus metalloproteases I and II. J. Biochem. 110: 339-344 https://doi.org/10.1093/oxfordjournals.jbchem.a123582
  93. Ueda, Y., S. Kojima, K. Tsumoto, S. Takeda, K. Miura, and I. Kumagai. 1992. A protease inhibitor produced by Streptomyces lividans 66 exhibits inhibitory activities toward both subtilisin BPN' and trypsin. J. Biochem. 112: 204-211 https://doi.org/10.1093/oxfordjournals.jbchem.a123878
  94. Umezawa, Y., K. Yokoyama, Y. Kikuchi, M. Date, K. Ito, T. Yoshimoto, and H. Matsui. 2004. Novel prolyl tri/tetrapeptidyl aminopeptidase from Streptomyces mobaraensis: Substrate specificity and enzyme gene cloning. J. Biochem. 136: 293-300 https://doi.org/10.1093/jb/mvh129
  95. Van Mellaert, L., E. Lammertyn, S. Schacht, P. Proost, J. Van Damme, B. Wroblowski, J. Anne, T. Scarcez, E. Sablon, J. Raeymaeckers, and A. Van Broekhoven. 1998. Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq. 9: 19- 30 https://doi.org/10.3109/10425179809050021
  96. Yamane, T., M. Kobuke, H. Tsutsui, T. Toida, A. Suzuki, T. Ashida, Y. Kawata, and F. Sakiyama. 1991. Crystal structure of Streptomyces erythraeus trypsin at 2.7 A resolution. J. Biochem. 110: 945-950 https://doi.org/10.1093/oxfordjournals.jbchem.a123694
  97. Yamane, T., A. Iwasaki, A. Suzuki, T. Ashida, and Y. Kawata. 1995. Crystal structure of Streptomyces erythraeus trypsin at 1.9 A resolution. J. Biochem. 118: 882-894 https://doi.org/10.1093/jb/118.5.882
  98. Zotzel, J., R. Pasternack, C. Pelzer, D. Ziegert, M. Mainusch, and H. L. Fuchsbauer. 2003. Activated transglutaminase from Streptomyces mobaraensis is processed by tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155 https://doi.org/10.1046/j.1432-1033.2003.03809.x