References
- Almog, O., H. M. Greenblatt, A. Spungin, D. Ben-Meir, S. Blumberg, and G. Shoham. 1993. Crystallization and preliminary crystallographic analysis of Streptomyces griseus aminopeptidase. J. Mol. Biol. 230: 342-344 https://doi.org/10.1006/jmbi.1993.1146
- Arima, J., M. Iwabuchi, and T. Hatanaka. 2004. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus. Biochem. Biophys. Res. Commun. 317: 531-538 https://doi.org/10.1016/j.bbrc.2004.03.082
- Avbelj, F., J. Moult, D. H. Kitson, M. N. James, and A. T. Hagler. 1990. Molecular dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, Streptomyces griseus protease A. Biochemistry 29: 8658- 8678 https://doi.org/10.1021/bi00489a023
- Baltz, R. H. 1998. Genetic manipulation of antibiotic-producing Streptomyces. Trends Biochem. Sci. 6: 76-83
- Barbosa, J. A., R. C. Garratt, and J. W. Saldanha. 1993. A structural model for the glutamate-specific endopeptidase from Streptomyces griseus that explains substrate specificity. FEBS Lett. 324: 45-50 https://doi.org/10.1016/0014-5793(93)81529-9
- Bauer, C. A. 1976. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'l. Biochim. Biophys. Acta 438: 495-502 https://doi.org/10.1016/0005-2744(76)90265-5
- Bauer, C. A. 1980. Active centers of alpha-chymotrypsin and Streptomyces griseus proteases 1 and 3. S2-P2 enzyme-substrate interaction. Eur. J. Biochem. 105: 565-570 https://doi.org/10.1111/j.1432-1033.1980.tb04533.x
- Bauer, C. A., R. C. Thompson, and E. R. Blout. 1976. The active centers of Streptomyces griseus protease 3, alpha-chymotrypsin, and elastase: Enzyme-substrate interactions close to the scissile bond. Biochemistry 15: 1296-1299 https://doi.org/10.1021/bi00651a020
- Ben-Meir, D., A. Spungin, R. Ashkenazi, and S. Blumberg. 1993. Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur. J. Biochem. 212: 107-112 https://doi.org/10.1111/j.1432-1033.1993.tb17639.x
- Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphey, K. Oliver, S. O'Niel, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
- Binnie, C., M. J. Butler, J. S. Aphale, R. Bourgault, M. A. DiZonno, P. Krygsman, L. Liao, E. Walczyk, and L. T. Malek. 1995. Isolation and characterization of two genes encoding proteases associated with the mycelium of Streptomyces lividans 66. J. Bacteriol. 177: 6033-6040 https://doi.org/10.1128/jb.177.21.6033-6040.1995
- Bormatova, M. E., N. M. Ivanova, M. P. Iuspova, T. L. Voiushina, I. A. Surova, G. G. Chestukhina, and V. M. Stepanov. 1996. Proteolytic enzymes from Streptomyces fradiae: A metalloendopeptidase, subtilisin-like, and trypsin-like proteinases. Biokhimiia 61: 344-356
- Butler, M. J., C. C. Davey, P. Krygsmann, E. Walczyk, and L. T. Malek. 1992. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: A novel neutral protease gene with an adjacent divergent putative regulatory gene. Can. J. Microbiol. 38: 912-920 https://doi.org/10.1139/m92-148
- Butler, M. J., A. Bergeron, G. Soostmeyer, T. Zimmy, and L. T. Malek. 1993. Cloning and characterisation of an aminopeptidase P-encoding gene from Streptomyces lividans. Gene 123: 115-119 https://doi.org/10.1016/0378-1119(93)90549-I
- Butler, M. J., C. Binnie, M. A. DiZonno, P. Krygsmann, G. A. Soltes, G. Soostmeyer, E. Walezyk, and L. T. Malek. 1995. Cloning and characterization of a gene encoding a secreted tripeptidyl aminopeptidase from Streptomyces lividans 66. Appl. Environ. Microbiol. 61: 3145-3150
-
Butler, M. J., J. S. Aphale, C. Binnie, M. A. DiZonno, P. Krygsman, G. Soltes, E. Walczyk, and L. T. Malek. 1996. Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisin
$BPN^1$ . Appl. Microbiol. Biotechnol. 45: 141-147 https://doi.org/10.1007/s002530050662 - Chang, P. C., T. C. Kuo, A. Tsugita, and Y. H. Lee. 1990. Extracellular metalloprotease gene of Streptomyces cacaoi: Structure, nucleotide sequence and characterization of the cloned gene product. Gene 88: 87-95 https://doi.org/10.1016/0378-1119(90)90063-W
- Chang, P. C. and Y. H. Lee. 1992. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi. J. Biol. Chem. 267: 3952-3958
- Chater, K. F. 1988. Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 1465-1478
- Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15 https://doi.org/10.1046/j.1365-2958.2003.03476.x
- Fernandez, M. and J. Sanchez. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH7451. Microbiology 148: 405-412 https://doi.org/10.1099/00221287-148-2-405
- Gibb, G. D. and W. R. Strohl. 1988. Physiological regulation of protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187-190 https://doi.org/10.1139/m88-034
- Greenblatt, H. M., O. Almog, B. Maras, A. Spungin-Bialik. D. Barra, S. Blumberg, and G. Shoham. 1997. Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution. J. Mol. Biol. 265: 620-636 https://doi.org/10.1006/jmbi.1996.0729
- Hanada, S., T. Kinoshita, N. Kasai, S. Tsunasawa, and F. Sakiyama. 1995. Complete amino acid sequence of a zinc metalloprotease from Streptomyces caespitosus. Eur. J. Biochem. 233: 683-686 https://doi.org/10.1111/j.1432-1033.1995.683_2.x
- Hatanaka, Y., H. Tsunematsu, K. Mizusaki, and S. Makisumi. 1985. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Biochem. Biophys. Acta 832: 274-279 https://doi.org/10.1016/0167-4838(85)90260-2
- Jeong, B.C., S. G. Kang, Y. T. Rho, and K. J. Lee. 1992. Submerged spore formation and biosynthesis of extracellular protease in Streptomyces albidoflavus SMF301. Kor. J. Microbiol. 31: 566-572
- Kakinuma, A., H. Sugino, N. Moriya, and M. Isono. 1978. Plasminostreptin, a protein proteinase inhibitor produced by Streptomyces antifibrinolyticus. I. Isolation and characterization. J. Biol. Chem. 253: 1529-1537
- Kang, S. G., I. S. Kim, Y. T. Rho, and K. J. Lee. 1995. Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomcyes albidoflavus SMF301. Microbiology 141: 3095-3103 https://doi.org/10.1099/13500872-141-12-3095
- Kang, S. G., I. S. Kim, J. G. Ryu, Y. T. Rho. and K. J. Lee. 1995. Purification and characterization of trypsin-like protease and metalloprotease in Streptomyces albidoflavus SMF301. J. Microbiol. 33: 307-314
- Kang, S. G. and K. J. Lee. 1997. Kinetic analysis of morphological differentiation and protease production in Streptomyces albidoflavus SMF301. Microbiology 143: 2709-2714 https://doi.org/10.1099/00221287-143-8-2709
- Kang, S. G., R. G. W. Kenyon, A. C. Ward, and K. J. Lee. 1998. Analysis of the differentiation state in Streptomyces albidoflavus SMF301 by the combination of pyrolysis mass spectrometry and neural network. J. Biotech. 62: 1-10 https://doi.org/10.1016/S0168-1656(98)00034-0
- Kato, J., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184: 6016-6025 https://doi.org/10.1128/JB.184.21.6016-6025.2002
- Kato, J., W. J. Chi, Y. Ohnishi, S. K. Hong, and S. Horinouhi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295 https://doi.org/10.1128/JB.187.1.286-295.2005
- Kato, J., S. Hirano, Y. Ohnishi, and S. Horinouchi. 2005. The Streptomyces subtilisin inhibitor (SSI) gene in Streptomyces coelicolor A(3)2. Biosci. Biotechnol. Biochem. 69: 1624- 1629 https://doi.org/10.1271/bbb.69.1624
- Katoh, T., N. Kikuchi, K. Nagata, and N. Yoshida. 1996. A mutant trypsin-like enzyme from Streptomyces fradiae, created by site-directed mutagenesis, improves affinity chromatography for protein trypsin inhibitors. Appl. Microbiol. Biotechnol. 46: 15-21 https://doi.org/10.1007/s002530050777
- Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187: 2957-2966 https://doi.org/10.1128/JB.187.9.2957-2966.2005
- Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane associated proteome of Streptomyces coelicolor. Microbiology 151: 2707-2720 https://doi.org/10.1099/mic.0.28000-0
- Kim, I. S., H. T. Kim, H. S. Lee, and K. J. Lee. 1991. Protease inhibitor production using Streptomyces sp. SMF13. J. Microbiol. Biotech. 1: 288-292 https://doi.org/10.1159/000108856
- Kim, I. S., H. T. Kim, A. C. Ward, M. Goodfellow, Y. C. Hah, and K. J. Lee. 1992. Numerical identification of a Streptomyces strain producing thiol protease inhibitor. J. Microbiol. Biotechnol. 2: 220-225
- Kim, I. S. and K. J. Lee. 1995. Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141: 1017-1025 https://doi.org/10.1099/13500872-141-4-1017
- Kim, I. S. and K. J. Lee. 1995. Nutritional regulation of morphological and physiological defferentiation on surface culture of Streptomyces exfoliatus SMF13. J. Microbiol. Biotechnol. 5: 200-205
- Kim, I. S. and K. J. Lee. 1995. Regulation of production of leupeptin, leupeptin inactivation enzyme and trypsin like protease in Streptomyces exfoliatus SMF13. J. Ferment. Bioeng. 80: 434-439 https://doi.org/10.1016/0922-338X(96)80916-0
- Kim, I. S. and K. J. Lee. 1995. Kinetic study on the production and degradation of leupeptin in Streptomyces exfoliatus SMF13. J. Biotechnol. 42: 35-44 https://doi.org/10.1016/0168-1656(95)00061-T
- Kim, I. S., S. G. Kang, and K. J. Lee. 1995. Physiological importance of trypsin like protease during morphological differentiation of Streptomyces spp. J. Microbiol. 33: 315- 321
- Kim, I. S. and K. J. Lee. 1996. Trypsin-like protease in Streptomyces exfoliatus SMF13, as a potential agent for mycelium differentiation. Microbiology 142: 1797-1806 https://doi.org/10.1099/13500872-142-7-1797
- Kim I. S., Y. B. Kim, and K. J. Lee. 1998. Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem. J. 331: 539-545 https://doi.org/10.1042/bj3310539
- Kim, J. C., S. H. Cha, S. T. Jeong, S. K. Oh, and S. M. Byun. 1991. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem. Biophys. Res. Commun. 181: 707-713 https://doi.org/10.1016/0006-291X(91)91248-B
- Kim, J. W., S. G. Kang, Y. T. Rho, and K. J. Lee. 1994. L-Cysteine metabolism and the effects on mycelium growth of Streptomyces albidoflavus SMF301 in submerged culture. J. Microbiol. Biotech. 4: 159-164
- Kitadokoro, K., E. Nakamura, M. Tamaki, T. Horii, H. Okamoto, M. Shin, T. Sato, T. Fujiwara, H. Tsuzuki, and N. Yoshida. 1993. Purification, characterization and molecular cloning of an acidic amino acid-specific proteinase from Streptomyces fradie ATCC 14544. Biochim. Biophys. Acta 1163: 149-157 https://doi.org/10.1016/0167-4838(93)90176-R
- Kitadokoro, K., H. Tsuzuki, H. Okamoto, and T. Sato. 1994. Crystal structure analysis of a serine proteinase from Streptomyces fradie at 0.16-nm resolution and molecular modeling of an acidic-amino-acid-specific proteinase. Eur. J. Biochem. 224: 735-742 https://doi.org/10.1111/j.1432-1033.1994.00735.x
- Kojima, S., I. Kumagai, and K. Miura. 1990. Effect on inhibitory activity of mutation at reaction site P4 of the Streptomyces subtilisin inhibitor, SSI. Protein Engineer. 3: 527-530 https://doi.org/10.1093/protein/3.6.527
- Kojima, S., Y. Nishiyama, I. Kumagai, and K. Mirura. 1991. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor. J. Biochem. 109: 377- 382 https://doi.org/10.1093/oxfordjournals.jbchem.a123389
- Kojima, S., T. Kumazaki, S. Ishii, and K, Miura. 1998. Primary structure of Streptomyces griseus metalloprotease II. Biosci. Biotechnol. Biochem. 62: 1392-1398 https://doi.org/10.1271/bbb.62.1392
- Kreier, V. G., G. N. Rudenskaia, N. S. Landau, S. S. Pokrovskaia, and V. M. Stepanov. 1983. Subtilisin-like proteinase SSPB from Streptomyces spheroides, strain 35. Biokhimiia 48: 1365-1373
- Krieger, T. J., D. Bartfeld, D. L. Jenish, and D. Hadary. 1994. Purification and characterization of a novel tripeptidyl aminopeptidase from Streptomyces lividans 66. FEBS Lett. 352: 385-388 https://doi.org/10.1016/0014-5793(94)00988-0
- Kumazaki, T., K. Kajiwara, S. Kojima, K. Miura, and S. Ishii. 1993. Interaction of Streptomyces subtilisin inhibitor (SSI) with Streptomyces griseus metallo-endopeptidase II (SGMP II). J. Biochem. 114: 570-575 https://doi.org/10.1093/oxfordjournals.jbchem.a124218
- Kuramoto, A., A. Lezhava, S. Taguchi, H. Momose, and H. Kinashi. 1996. The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol. Lett. 139: 37-42 https://doi.org/10.1111/j.1574-6968.1996.tb08176.x
- Kurisu, G., T. Kinoshita, A. Sugimoto, A. Nagara, Y. Kai, N. Kasai, and S. Harada. 1997. Structure of the zinc endoprotease from Streptomyces caespitosus. J. Biochem. 121: 304-308 https://doi.org/10.1093/oxfordjournals.jbchem.a021587
- Lee, K. J. and Y. T. Rho. 1993. Characteristics of spores formed by surface and submerged cultures of Streptomyces albioflavus SMF 301. J. Gen. Microbiol. 139: 3131-3137 https://doi.org/10.1099/00221287-139-12-3131
- Lee, K. J. 1998. Dynamics of morphological and physiological differentiation in actinomycetes group and quantitative analysis of the differentiation. J. Microbiol. Biotechnol. 8: 1-7
- Lichenstein, H. S., L. A. Busse, G. A. Smith, L. O. Narhi, M. O. McGinley, M. F. Rohde, J. L. Katzowitz, and M. M. Zukowski. 1992. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene 111: 125-130 https://doi.org/10.1016/0378-1119(92)90613-T
- Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: Morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145: 515-525 https://doi.org/10.1083/jcb.145.3.515
- Murao, S., S. Sato, and N. Muto. 1972. Studies on microbial alkaline protease inhibitor (SS-I) from Streptomyces albogriseolus S3253. 1. Isolation of alkaline protease inhibitor producing microorganisms. Agric. Biol. Chem. 36: 1737-1744 https://doi.org/10.1271/bbb1961.36.1737
- Murao, S. and S. Sato. 1973. SSI, a new alkaline protease inhibitor from Streptomyces albogriseolus S3253. Agric. Biol. Chem. 37: 160-163
- Nagamine-Natsuka, Y., S. Norioka, and F. Sakiyama. 1995. Molecular cloning, nucleotide sequence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus. J. Biochem. 118: 338-346 https://doi.org/10.1093/oxfordjournals.jbchem.a124912
- Nicieza R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. J. Biol. Chem. 274: 20366-20375 https://doi.org/10.1074/jbc.274.29.20366
- Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111 https://doi.org/10.1046/j.1365-2958.1999.01579.x
- Olafson, R. W., L. Jurasek, M. R. Carpenter, and L. B. Smillie. 1975. Amino acid sequence of Streptomyces griseus trypsin. Cyanogen bromide fragments and complete sequence. Biochemistry 14: 168-1177
- Olafson, R. W. and L. B. Smillie. 1975. Enzymic and physicochemical properties of Streptomyces griseus trypsin. Biochemistry 14: 1161-1167 https://doi.org/10.1021/bi00677a010
- Page, M. J., S. L. Wong, J. Hewitt, N. C. Strynadka, and R. T. MacGillivray. 2003. Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 9060-9066 https://doi.org/10.1021/bi0344230
- Read, R. J., G. D. Brayer, L. Jurasek, and M. N. James. 1984. Critical evaluation of comparative model building of Streptomyces griseus trypsin. Biochemistry 23: 6570-6575 https://doi.org/10.1021/bi00321a045
- Read, R. J. and M. N. James. 1988. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J. Mol. Biol. 200: 523-551 https://doi.org/10.1016/0022-2836(88)90541-4
- Rho, Y. T., J. W. Kim, and K. J. Lee. 1990. Effects of culture environments on alkaline protease biosynthesis in Streptomyces sp. Kor. J. Microbiol. 28: 162-168
- Rho, Y. T. and K. J. Lee. 1994. Kinetic studies on spore formation of Streptomyces albidoflavus SMF301 in submerged culture. Microbiology 140: 2061-2065 https://doi.org/10.1099/13500872-140-8-2061
- Satow, Y., Y. Mitsui, Y. Iitaka, and S. Sato. 1973. Crystallization and preliminary X-ray investigation of a new alkaline protease inhibitor and its complex with subtilisin BPN. J. Mol. Biol. 75: 745-746 https://doi.org/10.1016/0022-2836(73)90306-9
- Shin, H. S. and K. J. Lee. 1986. Regulation of extracellular alkaline proteases biosynthesis in a strain of Streptomyces sp. Kor. J. Microbiol. 24: 32-37
- Sidhu, S. S., G. B. Kalmar, and T. J. Borgford. 1993. Characterization of the gene encoding the glutamic-acid-specific protease of Streptomyces griseus. Biochem. Cell Biol. 71: 454-461 https://doi.org/10.1139/o93-067
- Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1994. Streptomyces griseus proteae C. A novel enzyme of the chymotrypsin superfamily. J. Biol. Chem. 269: 20167- 20171
- Stennicke, H. R., J. J. Birktoft, and K. Breddam. 1996. Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus. Protein Sci. 5: 2266-2275 https://doi.org/10.1002/pro.5560051113
- Suzuki, M., S. Taguchi, S. Yamada, S. Kojima, K. I. Miura, and H. Momose. 1997. A novel member of the subtilisin-like protease family from Streptomyces albogriseolus. J. Bacteriol. 179: 430-438 https://doi.org/10.1128/jb.179.2.430-438.1997
- Suzuki, Y., M. Yabuta, and K. Ohsuye. 1994. Cloning and expression of the gene encoding the glutamic acid-specific protease of Streptomyces griseus ATCC10137. Gene 150: 149-151 https://doi.org/10.1016/0378-1119(94)90875-3
- Svendsen, I., M. R. Jensen, and K. Breddam. 1991. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 292: 165-167 https://doi.org/10.1016/0014-5793(91)80859-2
- Taguchi, S., H. Kikuchi, M. Suzuki, S. Kojima, M. Terabe, K. Miura, T. Nakase, and H. Momose. 1993. Streptomyces subtilisin inhibitor-like proteins are distributed widely in Streptomycetes. Appl. Environ. Microbiol. 59: 4338-4341
- Taguchi, S., A. Odaka, Y. Watanabe, and H. Momose. 1995. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl. Environ. Microbiol. 61: 180-186
- Taguchi, S., T. Endo, Y. Naoi, and H. Momose. 1995. Molecular cloning and sequence analysis of a gene encoding an extracellular serine protease from Streptomyces lividans 66. Biosci. Biotechnol. Biochem. 59: 1386-1388 https://doi.org/10.1271/bbb.59.1386
- Taguchi, S., M. Suzuki, S. Kojima, and H. Momose. 1995. Streptomyces serine protease (SAM-P20): Recombinat production, characterization, and interaction with endogenous protease inhibitor. J. Bacteriol. 177: 6638-6643 https://doi.org/10.1128/jb.177.22.6638-6643.1995
- Taguchi, S., S. Kojima, K. Miura, and H. Momose. 1996. Taxonomic characterization of closely related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol. Lett. 135: 169-173 https://doi.org/10.1111/j.1574-6968.1996.tb07984.x
- Taguchi, S., T. Ogawa, T. Endo, and H. Momose. 1997. A gene homologous to the Streptomyces chymotrypsin-like protease (SAM-P20) gene is tandemly located. Biosci. Biotechnol. Biochem. 61: 909-913 https://doi.org/10.1271/bbb.61.909
- Takeuchi, Y., Y. Satow, K. T. Nakamura, and Y. Mitsui. 1991. Refined crystal structure of the complex of subtilisin BPN and Streptomyces subtilisin inhibitor at 1.8 resolution. J. Mol. Biol. 221: 309-325
- Takeuchi, Y., T. Nonaka, K. T. Nakamura, S. Kojima, and K. I. Miura. 1992. Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. Proc. Natl. Acad. Sci. USA 89: 4407-4411
- Tomono A., Y. Tsai, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353 https://doi.org/10.1128/JB.187.18.6341-6353.2005
- Tsuyuki, H., K. Kajiwara, A. Fujita, T. Kumazaki, and S. Ishii. 1991. Purification and characterization of Streptomyces griseus metalloproteases I and II. J. Biochem. 110: 339-344 https://doi.org/10.1093/oxfordjournals.jbchem.a123582
- Ueda, Y., S. Kojima, K. Tsumoto, S. Takeda, K. Miura, and I. Kumagai. 1992. A protease inhibitor produced by Streptomyces lividans 66 exhibits inhibitory activities toward both subtilisin BPN' and trypsin. J. Biochem. 112: 204-211 https://doi.org/10.1093/oxfordjournals.jbchem.a123878
- Umezawa, Y., K. Yokoyama, Y. Kikuchi, M. Date, K. Ito, T. Yoshimoto, and H. Matsui. 2004. Novel prolyl tri/tetrapeptidyl aminopeptidase from Streptomyces mobaraensis: Substrate specificity and enzyme gene cloning. J. Biochem. 136: 293-300 https://doi.org/10.1093/jb/mvh129
- Van Mellaert, L., E. Lammertyn, S. Schacht, P. Proost, J. Van Damme, B. Wroblowski, J. Anne, T. Scarcez, E. Sablon, J. Raeymaeckers, and A. Van Broekhoven. 1998. Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq. 9: 19- 30 https://doi.org/10.3109/10425179809050021
- Yamane, T., M. Kobuke, H. Tsutsui, T. Toida, A. Suzuki, T. Ashida, Y. Kawata, and F. Sakiyama. 1991. Crystal structure of Streptomyces erythraeus trypsin at 2.7 A resolution. J. Biochem. 110: 945-950 https://doi.org/10.1093/oxfordjournals.jbchem.a123694
- Yamane, T., A. Iwasaki, A. Suzuki, T. Ashida, and Y. Kawata. 1995. Crystal structure of Streptomyces erythraeus trypsin at 1.9 A resolution. J. Biochem. 118: 882-894 https://doi.org/10.1093/jb/118.5.882
- Zotzel, J., R. Pasternack, C. Pelzer, D. Ziegert, M. Mainusch, and H. L. Fuchsbauer. 2003. Activated transglutaminase from Streptomyces mobaraensis is processed by tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155 https://doi.org/10.1046/j.1432-1033.2003.03809.x