내용기반 음악 검색 시스템에서의 검색 속도 향상에 관한 연구

A Study on the Retrieval Speed Improvement from Content-Based Music Information Retrieval System

  • 윤원중 (단국대학교 컴퓨터과학 및 통계학과) ;
  • 박규식 (단국대학교 컴퓨터과학 및 통계학과)
  • Yoon Won-Jung (Dept. of Computer Science and Statistics, Dankook University) ;
  • Park Kyu-Sik (Dept. of Computer Science and Statistics, Dankook University)
  • 발행 : 2006.01.01

초록

본 논문에서는 빠르고 안정적이면서도 높은 검색 성공률을 보장하는 내용기반 음악 정보 검색 시스템을 구축하였다. 시스템 질의 구간이나 질의 길이에 따른 시스템 불안정성 문제를 해결할 수 있는 DB 구축 방법인 MFC기법과 각 Superclass별로 특징 벡터의 차수를 차등 적용하여 시스템의 검색 속도를 향상시킬 수 있는 기법을 적용하였다. Superclass를 적용한 시스템은 SuperClass를 적용하지 않은 시스템과의 검색 성공률, 검색 속도 그리고 검색 Precision 비교 실험에서 대등한 성능을 유지하면서 검색 속도를 $20\%\~40\%$ 향상시켰다.

In this paper, we propose the content-based music information retrieval system with improved retrieval speed and stable performance while maintaining resonable retrieval accuracy In order to solve the in-stable system problem multi-feature clustering (MFC) is used to setup robust music DB. In addition, the music retrieval speed was improved by using the Superclass concept. Effectiveness of the system with SuperClass and without SuperClass is compared in terms of retrieval speed, accuracy and retrieval precision. It is demonstrated that the use of WC and Superclass substantially improves music retrieval speed up to $20\%\~40\%$ while maintaining almost equal retrieval accuracy.

키워드

참고문헌

  1. G. Tzanetakis, 'Manipulation, Analysis and Retrieval Systems for Audio Signals', Ph. D. Thesis in Computer Science from Princeton University, June, 2002
  2. P. G. Guo and S. Z. Li, 'Content-based audio classification and retrieval by support vector machine', IEEE Trans. on neural networks, vol. 14, no. 1, pp. 209-215, Jan., 2003 https://doi.org/10.1109/TNN.2002.806626
  3. S. R. Subramanya, A. Youssef, B. Narahari, and R. Simha, 'Automated Classification of Audio Data and Retrieval Based on Audio Classes', International Conference on Computers and Their Applications, Cancun, Mexico, April, 1999
  4. J. Foote et al, 'An overview of audio information retrieval', ACM-Springer Multimedia Systems, vol. 7, no. 1, pp. 2-11, Jan. 1999 https://doi.org/10.1007/s005300050106
  5. S. Z. Li, 'Content-based classification and retrieval audio using the nearest feature line method', IEEE Trans. on Speech Audio Processing, vol. 8, pp. 619-625, Sept., 2000 https://doi.org/10.1109/89.861383
  6. Y. Wang, Z. Liu and J. Huang, 'Multimedia content analysis: using both audio and visual clues', IEEE Signal Proc. Mag., Nov., 2000 https://doi.org/10.1109/79.888862
  7. G. Guo and S. Z. Li, 'Content-based audio classification and retrieval by support vector machine', IEEE Trans. on neural networks, vol. 14, no. 1, pp. 209-215, Jan., 2003 https://doi.org/10.1109/TNN.2002.806626
  8. T, Li, M. Ogihara and Q. Li, 'A comparative study on content-based music genre classification', in Proc. of the 26th annual internal ACM SIGIR, pp. 282-289, ACM Press, July, 2003 https://doi.org/10.1145/860435.860487
  9. J. J. Burred and A. Lerch, 'A hierarchical approach to automatic musical genre classification', in Proc. DAFx03, pp. 308-311, Sept., 2003
  10. Kyu-Sik Park, Won-Jung Yoon, Kang-Kue Lee, Sang-Heon Oh and Ki-Man Kim, 'MRTB framework: a robust content-based music retrieval and browsing', Consumer Electronics, IEEE Transactions on Volume 51, Issue 1, pp. 117-122, Feb., 2005 https://doi.org/10.1109/TCE.2005.1405708