Abstract
This paper descWireless Sensor Network consisting of a number of small sensors with transceiver and data processor is an effective means for gathering data in a variety of environments. The data collected by each sensor is transmitted to a processing center that use all reported data to estimate characteristics of the environment or detect an event. This process must be designed to conserve the limited energy resources of the sensor since neighboring sensors generally have the data of similar information. Therefore, clustering scheme which sends aggregated information to the processing center may save energy. Existing multi-hop cluster energy consumption modeling scheme can not estimate exact energy consumption of an individual sensor. In this paper, we propose a new cluster energy consumption model which modified existing problem. We can estimate more accurate total energy consumption according to the number of clusterheads by using Voronoi tessellation. Thus, we can realize an energy efficient cluster formation. Our modeling has an accuracy over $90\%$ when compared with simulation and has considerably superior than existing modeling scheme about $60\%.$ We also confirmed that energy consumption of the proposed modeling scheme is more accurate when the sensor density is increased.
센싱, 데이터 가공, 통신이 가능한 소형의 센서 노드로 구성된 무선 센서 네트워크는 다양한 환경 변화를 측정할 수 있는 유용한 수단이다. 센서 노드에서 측정된 데이터는 모든 데이터를 수집, 처리하며 사용자에게 전달하는 기능을 가진 프로세싱 센터에 전송된다. 이러한 과정은 에너지 제약을 가진 센서 노드를 고려하여 설계되어야 한다. 일반적으로 인접한 센서 노드는 유사한 정보를 가지므로, 로컬 클러스터를 형성하고 클러스터 헤드에 의해 집약된 데이터를 프로세싱 센터에 전송하는 클러스터링 기법이 저전력 구동에 효과적이다. 자동 구성능력을 지닌 기존의 다중 홉 클러스터 에너지 소비량 모델링 기법은 개별 센서 노드의 정확한 에너지 소비량을 예측할 수 없는 문제를 가지고 있었다. 따라서 본 논문에서는 이러한 문제를 보완한 새로운 클러스터 에너지 소비량 모델링 기법을 제안한다. 제안된 모델링 기법은 보로노이 배열(Voronoi tessellation)을 이용하여 클러스터 헤드의 수에 따른 에너지 소비량을 모델링한다. 즉, 센서 필드의 면적, 분포된 센서 노드의 수와 통신 범위를 이용하여 전체 네트워크의 에너지 소비량을 클러스터 헤드의 수에 따라 정량적으로 나타낸다. 본 모델링 기법을 통해 전체 네트워크의 에너지 소비량이 최소가 되는 클러스터의 수를 예측함으로써 저전력을 실현할 수 있다. 본 논문에서 제안하는 모델링 기법은 시뮬레이션을 통해 구성한 실제 네트워크의 에너지 소비량과 $90\%$ 이상의 정확도를 가지며, 기존 모델링의 $60\%$대에 비춰볼 때 상당히 우수한 정확도를 지니고 있다. 또한, 센서 노드의 밀도가 증가할수록 에너지 소비량 정확도가 증가하는 효과를 확인하였다.