Min-Sum 반복 복호 알고리즘을 사용한 Tree-LDPC의 성능과 수렴 분석

Performance and Convergence Analysis of Tree-LDPC codes on the Min-Sum Iterative Decoding Algorithm

  • 노광석 (건국대학교 전자공학과, 차세대 혁신 기술연구원(NITRI)) ;
  • 허준 (건국대학교 전자공학과, 차세대 혁신 기술연구원(NITRI)) ;
  • 정규혁 (단국대학교 정보컴퓨터학부)
  • 발행 : 2006.01.01

초록

본 논문에서는 Tree-LDPC 코드의 성능을 scaling 인자를 이용한 min-sum 알고리즘을 사용하여 나타내고, 그때의 water fall 영역에서의 접근 성능은 density evolution 기법을 사용하여 나타낸다. Density evolution 기법을 통하여 얻어진 최적의 scaling 인자를 사용하게 되면 min-sum 알고리즘을 사용하는 Tree-LDPC 코드는 sum-product 알고리즘을 사용했을 때와 비슷한 성능을 나타낼 정도로 상당한 성능 이득을 갖게 되는 반면 sum-product 알고리즘을 사용했을 때보다 복호 복잡도가 훨씬 줄어들게 된다. 작은 인터리버 크기를 갖는 Tree-LDPC 복호기를 FPGA(Field Programmable Gate Array)로 구현하였다.

In this paper, the performance of Tree-LDPC code is presented based on the min-sum algorithm with scaling and the asymptotic performance in the water fall region is shown by density evolution. We presents that the Tree-LDPC code show a significant performance gain by scaling with the optimal scaling factor which is obtained by density evolution methods. We also show that the performance of min-sum with scaling is as good as the performance of sum-product while the decoding complexity of min-sum algorithm is much lower than that of sum-product algorithm. The Tree-LDPC decoder is implemented on a FPGA chip with a small interleaver size.

키워드

참고문헌

  1. Jun Heo and Kyuhyuk Chung, 'Tree-LOPC codes for IEEE 802.16 broadband wireless internet,' ICCE, Las Vegas January 2005
  2. R. G. Gallager, 'Low-density parity-check codes,' IRE Trans. Inform. Theory, vol. IT-8, pp. 21-28, January 1962
  3. D. Divsalar, H. Jin, and R. McEliece, 'Coding theorems for turbo-like codes,' in Proc. 36th Annu. Allerton Conference Communi cation, Control, Computing, pp. 201-210, September 1998
  4. L. Ping and W. Y. Keying, 'Concatenated tree codes: A low complexity, high-performance approach,' IEEE Trans. Inform. Theory, vol. 47, pp. 791-799, February 2001 https://doi.org/10.1109/18.910589
  5. T. J. Richardson and R. L. Urbanke, 'The capacity of low-density parity-check codes under . message-passing decoding,' IEEE Trans. Inform
  6. Jun Heo, 'Performance and Convergence Analysis of Improved MIN-SUM Iterative Decoding Algorithm,' IEICE Trans. on Comm., vol.E87-B, no 10., pp. 2847-2858, Oct. 2004
  7. A. Anastasopoulos, 'A comparison between the sum-product and the min-sum iterative detection algorithm based on density evolution,' in Proc. Globecom Conf., pp.10211025, 2001