DOI QR코드

DOI QR Code

Antioxidant Potential of Enzymatic Extracts from Blueberry (Vaccinium corymbosum L.)

블루베리 (Vaccinium corymbosum L.) 유래 효소 추출물의 항산화성

  • Senevirathne Mahinda (Department of Food Bioengineering, Cheju National University) ;
  • Jeon You-Jin (Faculty of Applied Marine Science, Cheju National University) ;
  • Ha Jin-Hwan (Department of Food Bioengineering, Cheju National University) ;
  • Cho Somi K. (Faculty of Biotechnology, Cheju National University) ;
  • Kim Soo-Hyun (Department of Food Bioengineering, Cheju National University)
  • ;
  • 전유진 (제주대학교 해양생산과학부) ;
  • 하진환 (제주대학교 식품공학과) ;
  • 김소미 (제주대학교 생명공학부) ;
  • 김수현 (제주대학교 식품공학과)
  • Published : 2006.02.01

Abstract

Enzymatic extracts were prepared from the blueberry (Vaccinium corymbosum L.) collected in Jeju, Korea. Five carbohydrases namely AMG, Celluclast, Termamyl, Ultraflo and Viscozyme, and five proteases namely Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex were used to prepare the enzymatic extracts. Antioxidant properties of each extracts were studied using stable 1,1-diphenyl 2-picrylhydrazyl (DPPH), reactive oxygen species (ROS), nitric oxide (NO) scavenging, metal chelating assays and lipid peroxidation inhibitory activity in hemoglobin-induced linoleic acid system. The phenolic content of all enzymatic extracts was in the range of 517.85-597.96 mg/100 g dried sample. DPPH and NO${\cdot}$scavenging, and metal chelating assays exhibited prominent activities. Viscozyme showed the highest DPPH activity $(0.046{\pm}0.002\;mg/mL)$ while AMG Showed the highest activity in NO${\cdot}$scavenging $(0.339{\pm}0.011\;mg/mL)$. All the extracts exhibited strong metal chelating activities. Blueberry enzymatic extracts also showed relatively good activity in hydrogen peroxide scavenging. AMG showed the highest lipid peroxidation inhibitory activity $(0.28{\pm}0.01\;mg/mL)$ in hemoglobin-induced linoleic acid system. In this results, the blueberry, which has potential antioxidant components, may be a good candidate as a natural antioxidant source.

제주지역에 서식하고 있는 블루베리 (Vaccinium corymbosum L.)로부터 수용성 추출물을 효과적으로 제조하기 위하여 5가지 종류의 탄수화물 분해효소 (AMG, Celluclast, Termamyl, Ultraflo, Viscozyme)와 또 다른 5종의 단백질 분해효소 (Alcalase, Flavourzyme, Kojizyme, Neutrase, Protamex)를 이용하여 효소적 추출을 시도하였다. 이들 효소를 이용하여 제조된 여러 가지 블루베리 효소 추출물에 대하여 1,1-diphenyl 2-picrylhydrazyl (DPPH), 활성산소종 (ROS), 일산화질소 $(NO{\cdot})$ 등의 소거 활성, 금속 킬레이트결합능, 그리고 지질 과산화 저해능과 같은 항산화 효과를 검토하였다. 모든 효소 추출물의 페놀함량은 $517.85\~597.96\;mg/100 g$ 건조시료이었으며, 항산화 효과에 대한 평가에서 특히 DPPH 및 $NO{\cdot}$ 소거활성, 그리고 금속 킬레이트 결합능 등이 우수한 것으로 나타났다. Viscozyme 추출물은 DPPH 소거활성 $(0.046{\pm}0.002\;mg/mL)$이, 그리고 AMG 추출물은 $NO{\cdot}$ 소거활성$(0.339{\pm}0.011\;mg/mL)$ 및 지질 과산화 억제활성 $(0.28{\pm}0.01\;mg/mL)$이 각각 우수하였다. 과산화 수소 소거활성에 있어서는 블루베리 효소 추출물들이 천연 항산화제인 a-토코페롤보다 상대적으로 높았다. 이러한 결과로 볼 때 블루베리는 항산화 효과가 우수한 화합물들을 함유하고 있을 것으로 판단되며, 향후 천연 항산화 자원으로서 이용이 가능할 것으로 사료된다.

Keywords

References

  1. Aft, R. L. and G. C. Muller. 1984. Hemin-mediated oxidative degradation of proteins. Journal of Biological Chemistry 259, 301-305
  2. Ahn, C. B., Y. J. Jeon, D. S. Kang, T. S. Shin and B. M. Jung. 2004. Free radical scavenging activity of enzymatic extract from brown seaweed Scytosiphon lomentarin by electron spins resonance spectrometry. Food Research International 37, 253-258 https://doi.org/10.1016/j.foodres.2003.12.002
  3. Ames, B. N., M. K. Shigrenaga, and T. M. Hagen. 1993. Oxidants, antioxidants and degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America 90, 7915–7922
  4. Aruoma, O. I. 1994. Deoxyribose assay for detecting hydroxyl radicals. Methods in Enzymology 233, 57–66
  5. Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenchaft and Technologie 28, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Chandler, S. F. and J. H. Dodds. 1993. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasidine in callus cultures of Solanum laciniatum. Plant Cell Reports 2, 105-110 https://doi.org/10.1007/BF00270178
  7. Chung, S. K., T. Osawa and S. Kawakishi. 1997. Hydroxyl radical scavenging effects of spices and scavengers from Brown Mustard (Brassica nigra). Bioscience Biotechnology Biochemistry 61, 118-123 https://doi.org/10.1271/bbb.61.118
  8. Cotelle, N., J. L. Bernier, J. P Catteau, J. Pommery, J. C. Wallet and E. M.Gaydou.1996. Antioxidant properties of hydroxyflavones. Free Radical Biology and Medicine 20, 35–43
  9. Dahl, M. K. and T. Richardson. 1978. Photogeneration of superoxide anion in serum of bovine milk and in model systems containing riboflavin and amino acids. Journal of Dairy Science 61, 400–407
  10. Decker, E. A. and B. Welch. 1990. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agriultural Food Chemistry 38, 674-677 https://doi.org/10.1021/jf00093a019
  11. DiMatteo, V. and E. Esposito. 2003. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, Current Drug Target CNS Neurological Disorders 2, 95–107
  12. Garrat, D. C. 1964. The quantitative analysis of drugs, vol.3. Chapman and Hall, Japan, 456-458
  13. Halliwell, B., M. M Antonia, C. Susanna and I. A. Okezie. 1995. Free radicals and antioxidants in food and in vivo: What they do and how they work. Critical Reviews in Food Science and Nutrition 35, 7–20
  14. Halliwell, B. and Gutteridge. 1985. Free radicals in biology and medicine. Oxford, UK; Oxford University Press
  15. Heo, S. J., Y. J. Jeon, J. Lee, H. T. Kim and K.W. Lee. 2003 Antioxidant effect of enzymatic hydrolysate from a Kelp, Ecklonia cava. Algae 18, 431-347
  16. Ito, N., S. Fukushima, A. Hasegawa, M. Shibata and T. Ogiso. 1983. Carcinogenecity of buthylated hydroxy anisole in F344 rats. Journal of the National Cancer Institute 70, 343-347
  17. Jeon, Y. J., H. G. Byun and S. K. Kim. 2000. Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemestry 35, 471-478
  18. Kalt, W., C. F. Forney, A. Martin and R. L. Prior.1999. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural Food Chemistry 47, 4638-4644 https://doi.org/10.1021/jf990266t
  19. Kay, C. D. and B. J. Holub. 2002. The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. British Journal of Nutrition 88, 389-397 https://doi.org/10.1079/BJN2002665
  20. Kitada, M., K. Igarashi, S. Hirose and H. Kitagawa. 1979. Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochemical and Biophysical Research Communications 87, 388–394
  21. Kris-Etherton, P. M., K. D. Hecker, A. Bonanome, S. M. Coval, A. E. Binkoski, K. F. Hilpert, A. E. Griel, and T. D. Etherton. 2002. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine 113, 71–88 https://doi.org/10.1016/S0002-9343(01)00995-0
  22. Kuo, J. M., D. B. Yeh and B.S. Pan. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. Journal of Agriculture and Food Chemistry 47, 3206-3209 https://doi.org/10.1021/jf981351o
  23. Moncada, A., R. M. J. Palmer and E. A. Higgs. 1991. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacological Reviews 43, 109-142
  24. Muller, H. E. 1995. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl Bakterio. International journal of Microbiology and Hygiene 259, 151-158
  25. Nagai, T., M. Sakai, R. Inoue, H. Inoue and N. Suzuki. 2001. Antioxidative activities of some commercially honeys, royal jelly, and propolis. Food Chemistry 75, 237-240 https://doi.org/10.1016/S0308-8146(01)00193-5
  26. Oki, T., M. Masuda, S. Furuta, Y. Nishibia, N. Terahara and I. Suda. 2002. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. Food and Chemistry and Toxicology 67, 1752–1756
  27. Prior, R. L., G. Cao, A. Martin, E. Sofic, J. McEwen, C. O'Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer and C. M. Mainland. 1998. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural Food and Chemistry 46, 2686-2693 https://doi.org/10.1021/jf980145d
  28. Pryor, W. A. 1991. The antioxidant nutrient and disease prevention-what do we know and what do we need to find out-. American Journal Clninical Nutrition 53, 391–393
  29. Thompson M, C. R. Williams. 1976. Stability of flavonoid complexes of copper (II) and flavonoid antioxidant activity. Analytica Chemica Acta 85, 375-381 https://doi.org/10.1016/S0003-2670(01)84703-6
  30. Yamaguchi, T., H. Takamura, T. Matoba and J. Terao. 1998. HPLC method forevaluation of the free radical-scav enging activity of foods by using 1,1-diphenyl-2 picrylhydrazyl. Bioscience Biotechnology Biochemistry 62, 1201–1204 https://doi.org/10.1271/bbb.62.1201