DOI QR코드

DOI QR Code

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor

평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구

  • 김준형 (전남대학교대학원 광공학협동과정) ;
  • 이종일 (전남대학교 응용화학공학부) ;
  • 이현용 (전남대학교 응용화학공학부)
  • Published : 2006.03.01

Abstract

Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Keywords

References

  1. 강지윤, 김태송, '나노바이오 센서/칩의 연구동향', 전기전자재료, 17권, 4호, p. 5, 2004
  2. F. S. Ligler and C. A. Rowe Taitt, 'Optical Biosensors: Present and Future', Elsevier, p. 207, 2002
  3. F. S. Ligler and C. A. Rowe Taitt, 'Optical Biosensors: Present and Future', Elsevier, p. 334, 2002
  4. R. G, Heideman, R. P. H. Kooyman, and J. Greve, 'Performance of a highly sensitive optical waveguide mach-zehnder interferometer immunosensor', Sensors and Actuators B, Vol. 10, No.3, p. 209, 1993 https://doi.org/10.1016/0925-4005(93)87008-D
  5. 남기연, 정 건, 김준형, 조성준, 이현용, '일차원 광자결정을 이용한 다중채널 광-투과 필터' 한국전기전자재료학회 2004하계학술대회논문집, p. 993, 2004
  6. J. D. Joannopoulox, R. Meade, and J. Winn, 'Photonic Crystals: Molding the Flow of Light', Princeton Univ. Press, Princeton, 1995
  7. E. Yablonovitch, 'Photonic band-gap structures', J. Opt. Soc. Am. B, Vol. 10, No.2, p. 283, 1993 https://doi.org/10.1364/JOSAB.10.000283
  8. 김해성, 신동훈, 김순구, 이진구, 이범석, 김혜원, 이재은 한영수, 최영호, '2차원 광결정 제작에 패턴 특성을 향상시키기 위한 공정 기술' 전기전자재료학회논문지, 16권, 6호, p. 515, 2003
  9. Intel, 'The intel lithography roadmap', Intel Technology Journal, Vol. 6, No.2, p. 56, 2002
  10. J. G. Fleming and S.-Y. Lin, 'Threedimensional photonic crystal with a stop band from 1.34 to 1.95 $\mu$m', Opt. Lett., Vol. 24, No.1, p. 49, 1999 https://doi.org/10.1364/OL.24.000049
  11. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A Vawter, W. Zubrzycki, H. Hou, and A. Alleman, 'Three-dimensional control of light in a two-dimensional photonic crystal slab', Nature, Vol. 407, No. 6807, p. 983, 2000 https://doi.org/10.1038/35039583
  12. R. D. Piner, J. Zhu, F. Xu, S. Hong, and C. A. Mirkin, 'Dip-pen nanolithography', Science, Vol. 283, No. 5402, p. 661, 1999 https://doi.org/10.1126/science.283.5402.661
  13. S. Hong, J. Zhu, and C. A. Mirkin, 'Multiple ink nanolithography: Toward a multiplepen nano-plotter', Science, Vol. 286, No. 5439, p. 523, 1999 https://doi.org/10.1126/science.286.5439.523
  14. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, 'Integrated mach-zehnder interferometer based on ARROW structures for biosensor applications', Sensors and Actuators B, Vol. 92, No. 1-2, p. 151, 2003 https://doi.org/10.1016/S0925-4005(03)00257-0