DOI QR코드

DOI QR Code

Dispersion Technique of Alumina Nanoparticles in Transformer Oil

알루미나 나노분말을 함유한 변압기 절연유의 분산기술

  • 송현우 (한국전력공사 전력연구원) ;
  • 최철 (한국전력공사 전력연구원) ;
  • 최경식 (한국전력공사 전력연구원) ;
  • 오제명 (한국전력공사 전력연구원)
  • Published : 2006.03.01

Abstract

Two different nanofluids were prepared by dispersing $Al_{2}O_3$ nanoparticles in transformer oil after hydrophobic surface modification. The agglomerated alumina nanoparticles with diameters from ${\mu}m$ to mm were ball-milled and then treated with surfactants such as lauric acid, stearic acid and oleic acid. The surface characteristics of modified nanoparticles were examined by FTIR spectroscopy. It showed that the hydrophobicity of nanoparticles was caused by esterification between hydroxyl groups on the particle surface and functional groups of surfactant. The shape and size distribution of ball-milled particles were analyzed by TEM and PSA. The results compared with the primary particles indicated that the size distributions of nanoparticles were dependant on milling times. The dispersion stability of modified nanoparticles dispersed in oil was highly dependent on the composition and amounts of surfactants.

Keywords

References

  1. J. C. Maxwell, 'A treatise on electricity and magnetism', Clarendon Press, Oxford, UK, p. 435, 1881
  2. G. Jiang, H. Zhuang, J. Zhang, M. Ruan, W. Li, F. Wu, and B. Zhang, 'Morphologies and growth mechanism of aluminum nitride whiskers by SHS method-Part I, II', J. Mater. Sci., Vol. 35, p. 57, 2000 https://doi.org/10.1023/A:1004780213488
  3. D. S. Ginger and N. C. Greenham, 'Charge injection and transport in films of CdSe nanocrystals', J. Appl. Phys., Vol. 87, p. 1361, 2000
  4. S. V. Kershaw, M. T. Harrison, A. L. Rogach, and A. Kornowski, 'Development of IR-emmiting colloidal II-VI quantum-dot materials', IEEE J. Selected Topics in QE, Vol. 6, No.3, p. 534, 2000 https://doi.org/10.1109/2944.865109
  5. S. U. S. Choi, 'Enhancing thermal conductivity of fluids with nanoparticles', Developments and Applications of Non-Newtonian Flows, ASME, FED-Vol. 231/ MD- Vol. 66, p. 99, 1995
  6. S. Lee and S. U. S. Choi, 'Application of metallic nanoparticles suspensions in advanced cooling systems', Recent Advances in Solid/Structures and Application of Metallic Materials, ASME, PVP-342/MD-72, p. 227, 1996
  7. J. A. Eastman, S. U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. Di Melfi, 'Novel thermal properties of nanostructured materials', Mater. Sci. Forum, Vol. 312, p. 629, 1999
  8. Y. Xu an and Q. Li, 'Heat transfer enhancement of nanofluids', Int. J. Heat Fluid Flow, Vol. 21, p. 58, 2000
  9. S. K. Das, N. Putra, and W. Roetzel, 'Pool boiling characteristics of nano-fluids', Int. J. Heat Mass Trans., Vol. 46, p. 851, 2003 https://doi.org/10.1016/S0017-9310(02)00348-4
  10. H. Zhu, U. Lin, and Y. Yin, 'A novel one-step chemical method for preparation of copper nanofluids', J. ColI. Int. Sci., Vol. 277, p. 100, 2004 https://doi.org/10.1016/j.jcis.2004.04.026
  11. S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, 'Measuring thermal conductivity of fluids containing oxide nanoparticles', ASME J. Heat Trans., Vol. 121, p. 280, 1999
  12. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, 'Alternation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles(dispersions of v- $Al_2O_3$, $SiO_2$ and $TiO_2$ ultra-fine particles)', Netsu Bussei(Japan), Vol. 4, p. 227, 1993
  13. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, 'Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles', Appl, Phys. Lett., Vol. 78, p. 718, 2001 https://doi.org/10.1063/1.1341218
  14. B. C. Pak and Y. I. Cho, 'Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles', Exp. Heat Transfer, Vol. 11, p. 151, 1998
  15. H. Xie, J. Wang, T. Xi, Y. Liu, and F. Ai, 'Thermal conductivity of suspension containing SiC particles', J. Mater. Sci. Lett., Vol. 21, p. 193, 2002
  16. H. Xie, J Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, 'Thermal conductivity enhancement of suspensions containing nanosized alumina particles', J. Appl. Phys., Vol. 91, p. 4568, 2002 https://doi.org/10.1063/1.1433177
  17. Y. Xuan and Q. Li, 'Investigation on convective heat transfer and flow features of nanofluids', J. Heat Trans., Vol. 125, p. 151, 2003 https://doi.org/10.1115/1.1532008
  18. H. Kumar, H. E. Patel, V. R. Rajeev Kumar, T. Pradeep, and S. K. Das, 'Model for heat conduction in nanofluids', Phys, Rev. Lett., Vol. 93, No. 14, p. 144301-1, 2004 https://doi.org/10.1103/PhysRevLett.93.144301