Morphological and Photoluminescence Characteristics of Laterally Self-aligned InGaAs/GaAs Quantum-dot Structures

수평 자기정렬 InGaAs/GaAs 양자점의 형태 및 분광 특성 연구

  • Kim J. O. (Department of Electrical Engineering and Computer Science, Kyunghee University, Quantum-Dot Technology Laboratory, Korea Research Institute of Standards and Science) ;
  • Choe J. W. (Department of Electrical Engineering and Computer Science, Kyunghee University) ;
  • Lee S. J. (Quantum-Dot Technology Laboratory, Korea Research Institute of Standards and Science) ;
  • Noh S. K. (Quantum-Dot Technology Laboratory, Korea Research Institute of Standards and Science)
  • 김준오 (경희대학교 전기컴퓨터공학부, 한국표준과학연구원 양자점기술 국가지정연구실) ;
  • 최정우 (경희대학교 전기컴퓨터공학부) ;
  • 이상준 (한국표준과학연구원 양자점기술 국가지정연구실) ;
  • 노삼규 (한국표준과학연구원 양자점기술 국가지정연구실)
  • Published : 2006.01.01

Abstract

Laterally self-aligned InGaAs/GaAs quantum-dots (QDs) have been fabricated by using a multilayer stacking technique. For the growth optimization, we vary the number of stacks and the growth temperature in the ranges of 1-15 periods and $500-540^{\circ}C$. respectively, Atomic force microscope (AFM) images and photoluminescence (PL) spectra reveal that the lateral alignment of QDs is enhanced in extended length by an increased stack period, but severely degrades into film-like wires above a critical growth temperature. The morphological and the photoluminescence characteristics of laterally self-aligned InGaAs QDs have been analyzed through mutual comparisons among four samples with different parameters. An anisotropic arrangement develops with increasing number of stacks, and high-temperature capping allows isolated QDs to be spontaneously organized into a one-dimensionally aligned chain-like shape over a few ${\mu}m$, Moreover, the migration time allowed by growth interruption plays an additional important role in the chain arrangement of QDs. The QD chains capped at high temperature exhibit blue shifts in the emission energy, which may be attributed to a slight outdiffusion of In from the InGaAs QDs.

다중 적층법을 이용하여 수평방향으로 자기정렬된 InGaAs/GaAs 양자점(quantum dot, QD)을 제작하고, 원자력간 현미경(AFM) 사진과 발광(PL) 스펙트럼을 이용하여 QD의 특성을 분석하였다. 적층주기가 증가함에 따라 정렬 QD의 길이가 길어지고, 임계 성장온도 이상에서는 QD 사이의 상호확 산에 의하여 양자선 형태로 변화함을 관측하였다. 성장 변수가 서로 다른 4개 시료의 비교 분석을 통하여, 수직으로 적층되면서 비등방성 정렬이 이루어지고, 수 ${\mu}m$ 이상 1차원적으로 정렬된 QD 사슬 모양 의 구조를 얻을 수 있었다. 또한 성장일시멈춤 과정을 통한 이주시간의 증가는 QD의 1차윈 정렬에 중요한 변수임을 알 수 있었다. 고온에서 덮개층을 형성한 QD 구조에서 관측된 발광 에너지의 청색변위 현상은 InGaAs QD로부터 In이 덮개층으로 확산되었기 때문으로 해석된다.

Keywords

References

  1. P. M. Petroff, A. Lorke, and A. Imanoglu, Phys. Today 54, 46 (2001)
  2. M. Kuntz, G. Fiol, M. Laemmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Yu. M. Shernyakov, and A. R. Kovsh, Appl. Phys. Lett. 85, 843 (2004) https://doi.org/10.1063/1.1776340
  3. I. R. Sellers, H. Y. Liu, K. M. Groom, D. T. Childs, D. Robbins, T. J. Badcock, M. Hopkinson, D. J. Mowbray, and M. S. Skolnick, Electron. Lett. 40, 1412 (2004) https://doi.org/10.1049/el:20046692
  4. J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T. O'Sullivan, T. Sills, M. Razeghi, G. J. Brown, and M. Z. Tidrow, Appl. Phys. Lett. 84, 2232 (2004) https://doi.org/10.1063/1.1688000
  5. E. -T. Kim, A. Madhukar, Z. Ye, and C. Campbell, Appl. Phys. Lett. 84, 3277 (2004) https://doi.org/10.1063/1.1719259
  6. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002) https://doi.org/10.1126/science.1066790
  7. M. Jung, K. Hirakawa, Y. Kawaguchi, S. Komiyama, S. Ishida, and Y. Arakawa, Appl. Phys. Lett. 86, 033106 (2005) https://doi.org/10.1063/1.1853516
  8. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, Jpn. J. Appl. Phys. 40, L488 (2001) https://doi.org/10.1143/JJAP.40.L488
  9. H. Nakamura, S. Nishikawa, S. Kohmoto, K. Kanamoto, and K. Asakawa, J. Appl. Phys. 91, 922 (2002) https://doi.org/10.1063/1.1429795
  10. Y. Nakamura, N. Ikeda, S. Ohkouchi, Y. Sugimoto, H. Nakamura, and K. Asakawa, Jpn. J. Appl. Phys. 43, L362 (2004) https://doi.org/10.1143/JJAP.43.L362
  11. N. Koguchi, J. Korean Phys. Soc. 45, S650 (2004)
  12. J. S. Kim, M. Kawabe, and N. Koguchi, J. Cryst. Growth 262, 265 (2004) https://doi.org/10.1016/j.jcrysgro.2003.10.020
  13. H. J. Kim, Y. J. Park, Y. M. Park, E. K. Kim, and T. W. Kim, Appl. Phys. Lett. 78, 3253 (2001) https://doi.org/10.1063/1.1362337
  14. K. Yamaguchi, K. Kawaguchi, and T. Kanto, Jpn. J. Appl. Phys. 41, L996 (2002) https://doi.org/10.1143/JJAP.41.L996
  15. Z. M. Wang, K. Holmes, Yu. I. Mazur, and G. J. Salamo, Appl. Phys. Lett. 84, 1931 (2004) https://doi.org/10.1063/1.1669064
  16. Zh. M. Wang, H. Churchill, C. E. George, and G. J. Salamo, J. Appl. Phys. 96, 6908 (2004) https://doi.org/10.1063/1.1815382
  17. T. Mano, R. Noetzel, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, J. Appl. Phys. 95, 109 (2004) https://doi.org/10.1063/1.1631069
  18. M. A. Migliorato, L. R. Wilson, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. M. Cullis, and M. Hopkinson, J. Appl. Phys. 90, 6374 (2001) https://doi.org/10.1063/1.1418003
  19. H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, Appl. Phys. Lett. 78, 105 (2001) https://doi.org/10.1063/1.1336554
  20. G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Science 282, 734 (1998) https://doi.org/10.1126/science.282.5389.734
  21. J. O. Kim, S. J. Lee, S. K. Noh, Y. H. Ryu, S. M. Choi and J. W. Choe , J. Korean Phys. Soc. 47, 94 (2005)
  22. J. O. Kim, S. J. Lee, S. K. Noh, Y. H. Ryu, S. M. Choi and J. W. Choe , J. Korean Phys. Soc. 47, 838 (2005)
  23. S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, J. Cryst. Growth 267, 405 (2004) https://doi.org/10.1016/j.jcrysgro.2004.04.014
  24. S. J. Lee, J. O. Kim, Y. G. Kim, S. K. Noh, Y. H. Ryu, S. M. Choi, and J. W. Choe, J. Korean Phys. Soc. 46, 1396 (2005)
  25. S. Adachi, J. Appl. Phys. 53, 8775 (1982) https://doi.org/10.1063/1.330480