DOI QR코드

DOI QR Code

The analysis and leaching characteristics of organic compounds in incineration residues from municipal solid waste incinerators

생활폐기물 소각시설 소각재에서의 유기오염물질 정성분석 및 용출특성

  • Hong, Suk-Young (Department of Chemical Engineering Graduate School, Dankook University) ;
  • Kim, Sam-Cwan (Environmental Measurement Standards Department of National Institute of Environmental Research) ;
  • Yoon, Young-Soo (Department of Chemical Engineering Graduate School, Dankook University) ;
  • Park, Sun-Ku (Environmental Measurement Standards Department of National Institute of Environmental Research) ;
  • Kim, Kum-Hee (Environmental Measurement Standards Department of National Institute of Environmental Research) ;
  • Hwang, Seung-Ryul (Environmental Measurement Standards Department of National Institute of Environmental Research)
  • 홍석영 (단국대학교 화학공학과) ;
  • 김삼권 (국립환경과학원 환경측정기준부) ;
  • 윤용수 (단국대학교 화학공학과) ;
  • 박선구 (국립환경과학원 환경측정기준부) ;
  • 김금희 (국립환경과학원 환경측정기준부) ;
  • 황승률 (국립환경과학원 환경측정기준부)
  • Received : 2005.12.12
  • Accepted : 2006.01.20
  • Published : 2006.02.27

Abstract

This study was carried out to estimate leaching characteristics of incineration residues from municipal solid waste incinerators, and determine organic compounds in raw ash, leaching water and leaching residue. A total of 44 organic compounds, which were analyzed by GC/MSD and identified by wiley library search, were contained in bottom ashes. A total of 17 organic compounds were contained in fly ashes. Bottom ash and fly ash were found to contain a wide range of organic compounds such as aliphatic compounds and aromatic compounds. Organic compounds such as Ethenylbenzene, Benzaldehyde, 1-Phenyl-Ethanone and 1,4-Benzenedicarboxylic acid dimethyl ester were detected in raw ash, leaching water and residues (from bottom ash). Organic compounds such as Naphthalene, Dodecane, 1,2,3,5-Tetrachlorobenzene, Tetradecane, Hexadecane and Pentachlorobenzene were detected in raw ash, leaching water and residues (from fly ash). Through the leaching characteristics of incineration residue, it was represented that the open dumping of incineration residue can contaminate the soil and undergroundwater. In order to prevent environmental contamination that derived from extremely toxic substances in the incineration residues, it is particularly important that the incineration residues should be treated before disposal the incineration residues. Further study and proper management about leaching characteristics of organic compounds might be required.

현재 가동 중인 생활폐기물 소각시설에서 배출되는 소각재의 수세처리에 의한 유기화학물질 용출특성을 확인하기 위해 GC/MSD로 정성 분석을 하였다. 바닥재 및 비산재에서 각각 44종 및 17종의 다양한 유기화합물질을 확인하였다. 이러한 정성분석은 각 피크의 질량스펙트럼에 대한 Library(NIST21, NIST107, WILEY229) 검색 후 일치도가 90% 이상인 유사지표(similarity index)에 의해 수행되었다. 바닥재는 Naphthalene 그리고 Phenanthrene인 2종의 다방향족화합물(Polycyclic Aromatic Hydrocarbons, PAHs)을 포함한 18종의 방향족화합물과 사슬모양의 탄화수소인 26종의 지방족화합물을 검출하였다. 비산재의 경우 잔류성유기오염물질(Persistent Organic Pollutants, POPs)인 헥사클로로벤젠(Hexachlorobenzene, HCB)을 포함한 10종의 방향족화합물과 7종의 지방족화합물을 정성적으로 확인하였다. 또한, 바닥재와 비산재의 용출액과 용출잔사의 용출특성을 비교분석한 결과, 바닥재에서는 Ethenylbenzene, Benzaldehyde, 1-Phenyl-ethanone 그리고 1,4-Benzenedicarboxylic acid dimethyl ester 등이, 비산재에서는 Naphthalene, Dodecane, 1,2,3,5-Tetrachlorobenzene, Tetradecane, Hexadecane 그리고 Pentachlorobenzene등의 유기화합물이 수층으로 용출되는 결과를 얻었다. 따라서 소각재 중 비산재 및 바닥재가 단순 매립될 경우 유기화합물에 의한 침출수 및 지하수, 토양 등 2차 오염이 발생할 것으로 추정되며, 이러한 2차 오염을 방지하기 위해서 소각재에 함유되어 있는 다양한 종류의 유기화학물질의 용출특성을 조사하여 이에 대한 효율적이고 적정한 관리가 이루어져야 할 것으로 판단된다.

Keywords

References

  1. C. K. Shin, S. C. Kim, K. C. Lee, M. H. Kwon, J. H Lee, S. G. Jeong, G. J. Song, K. E. Park, S. H. Song and K. H. Kim, 'A Study on the Proper Treatment of Incineration Residues from MSW Incinerator(I)-on the basis of Bottom Ash-', National Institute of Environmental Research, Incheon, Korea (2000)
  2. S. C. Kim, C. k. Shin, K. C. Lee, M. H. Kwon, J. H Lee, S. G. Jeong, G. J. Song, K. E. Park, S. H. Song and K. H. Kim, 'A Study on the Proper Treatment of Incineration Residues from MSW Incinerator(II)-on the basis of Fly Ash-', National Institute of Environmental Research, Incheon, Korea (2001)
  3. Karl Jocchim Thome-Kozmiensky. K. J, 'Themische Abfallbehandlung, EF-Verl. fuer Energie-und Umwelttechnic', 577(1994)
  4. Hong. K. J, Tokunaga. S. and Kajiuchi, T. Journal of Harzardous Materials, B75, 57-73(2000)
  5. Jung. C. H, Matusuto. T. N, Tanaka. N and Okada. T, Waste Management, 24, 381-391(2004) https://doi.org/10.1016/S0956-053X(03)00137-5
  6. Osako. M and Kim. Y, J. Chemosphere, 54, 105-116(2004) https://doi.org/10.1016/S0045-6535(03)00755-0
  7. 환경부 :폐기물 관리법, 2004
  8. Environmental Protection Agency(EPA), Soxhlet Extraction, Method 3540C (1996)
  9. Environmental Protection Agency(EPA), Separatory Funnel Liquid Method, 3510C (1996)
  10. Labunska. I, Brigden. K, Johnston. P, Santillo. D and Stringer. R, 'Concentrations of heavy metals and organic contaminants in ash collected from the Izmit hazardous/clinical waste incinerator', April (2000)
  11. Shin'ichi Nito and Shigeo Ishizaki, chemosphere, 35, 1755-1722(1997) https://doi.org/10.1016/S0045-6535(97)00256-7
  12. The inventory of sources of Dioxin in the united states, EPA/600/p-98/002Aa,(April 1998). http://www.epa.gov/ncea/pdfs/dioxin /part1/volume2/chap11.pdf
  13. S. C. Kim, S. H. Choe, Z. G. Na, Z. H. Lee, K. H. Kim, R. S. Hwang, J. Y. Chang and H. J. Cho, 'A Study on the generation mechanism and Emission characteristics of hexachlorobenzene from major stationary sources', National Institute of Environmental Research, Incheon, Korea (2003)
  14. Rushneck. D.R, Andy. B, Brian F, Coreen H, Dale H, Katharine K, Marlene B, Terry S, William A.T, Henry R, Chemosphere, 54(1), 79-87(2004) https://doi.org/10.1016/S0045-6535(03)00707-0
  15. Addink. R, Van Bavel. B, Visser. R, Wever. H, Slot. P and Olie. K, Chemosphere, 20(10-12), 1921-1934 (1990) https://doi.org/10.1016/0045-6535(90)90361-V
  16. Milligan. M. S, Altwicker. E, Environ. Sci. Techno, 27(8), 1595-1601(1993) https://doi.org/10.1021/es00045a015
  17. Y. H. Chung, S. C. Kim, S, K. Shin, I. G. Kang, J. I. Lee, W. S. Lee, J. B. Lee, E. H. Lee, D. H. Lee, J. H. Hong and D. G. Kim, 'A Study on the Emission Rate and Generation Mechanism of Dioxin in Environment(I)', National Institute of Environmental Research, Incheon, Korea (1997)
  18. Inger Johansson, Bert van Bavel, Chemosphere, 53, 123-128 (2003) https://doi.org/10.1016/S0045-6535(03)00449-1
  19. A. D. Wheatley, S. Sadhra, chemospere, 55, 743-749 (2004) https://doi.org/10.1016/j.chemosphere.2003.10.055
  20. Yoshio Akimoto, Tadamitu Aoki, Shin'ichi Nito and Yoshio Inouye, chemosphere, 34, 263-273(1997) https://doi.org/10.1016/S0045-6535(96)00376-1
  21. Quast. J.F, C.G. Humiston, R.Y. Kalnins, et al. 'Results of a toxicity study of monomeric styrene administered to beagle dogs by oral intubation for 19 months' Toxicology Research Laboratory, Health and Environmental Sciences, DOW Chemical Co, Midland, MI. Final Report, 1979
  22. Kluwe WM, Gupta BN, Lamb JC, Toxicol Appl Pharmacol, 70, 67-86(1983) https://doi.org/10.1016/0041-008X(83)90180-1
  23. NTP (National Toxicology Program), 'Toxicology and Carcinogenesis Studies of 2-Chloroacetophenone (CAS No. 532-27-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies)', Technical Report No. 379. NTP, 1990
  24. Krasavage. W. J, F. J. Yanno and C. J. Terhaar, Dimethyl terephthalate (DMT). Acute toxicity subacute. Feeding inhalation studies in male rats. Am. Ind. Hyg. Assoc. J. 34(10), 455-462 (1973) https://doi.org/10.1080/0002889738506879
  25. Shopp. GM, White. KL. Jr, Holsapple. MP, et al, Fundam Appl Toxicol, 4(3 pt 1), 406-419 (1984) https://doi.org/10.1016/0272-0590(84)90214-8
  26. Chu, I, D. C. Villeneuve, V. E. Valli and V. E. Secours, Drug Chem. Toxicol. 7, 113-127 (1984) https://doi.org/10.3109/01480548408998410
  27. Linder R, T. Scotti, J. Goldstein, K. McElroy and D. Walsh, J. Environ. Pathol. Toxicol, 4, 183-196 (1980)