DOI QR코드

DOI QR Code

The progress in NF3 destruction efficiencies of electrically heated scrubbers

전기가열방식 스크러버의 NF3 제거 효율

  • Moon, Dong Min (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Lee, Jin Bok (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Lee, Jee-Yon (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science) ;
  • Kim, Dong Hyun (Samsung Electronics Co., LTD.) ;
  • Lee, Suk Hyun (Environment Planning Team, LG Philips LCD) ;
  • Lee, Myung Gyu (Manufacturing Division, BOE Hydis Thechnology Co., LTD.) ;
  • Kim, Jin Seog (Division of Metrology for Quality Life, Korea Research Institute of Standards and Science)
  • 문동민 (삶의질표준부, 한국표준과학연구원) ;
  • 이진복 (삶의질표준부, 한국표준과학연구원) ;
  • 이지연 (삶의질표준부, 한국표준과학연구원) ;
  • 김동현 (삼성전자) ;
  • 이석현 (환경기획팀, 엘지 필립스 LCD) ;
  • 이명규 ;
  • 김진석 (삶의질표준부, 한국표준과학연구원)
  • Received : 2006.09.06
  • Accepted : 2006.10.17
  • Published : 2006.12.28

Abstract

Being used widely in semiconductor and display manufacturing, $NF_3$ is internationally considered as one of the regulated compounds in emission. Numerous companies have been continuously trying to reduce the emissions of $NF_3$ to comply with the global environmental regulation. This work is made to report the destruction and removal efficiency (DRE) of electrically heated scrubbers and the use rate in process chambers installed in three main LCD manufacturing companies in Korea. As the measurement techniques for $NF_3$ emission, mass flow controlled helium gas was continuously supplied into the equipment by which scrubber efficiency is being measured. The partial pressures of $NF_3$ and helium were accurately measured for each sample using a mass spectrometer, as it is emitted from inlet and outlet of the scrubber system. The results show that the DRE value for electrically heated scrubbers installed before 2004 is less than 52 %, while that for the new scrubbers modified based on measurement by scrubber manufacturer has been sigificentely improved upto more than 95 %. In additon, we have confirmed the efficiency depends on such variables as the inlet gas flow rate, water content, heater temperature, and preventative management period. The use rates of $NF_3$ in process chambers were also affected by the process type. The use rate of radio frequency source chambers, built in the $1^{st}$ and $2^{nd}$ generation process lines, was determined to be less than 75 %. In addition, that of remote plasma source chambers for the $3^{rd}$ generation was measured to be aboove 95 %. Therefore, the combined application of improved scrubber and the RPSC process chamber to the semiconductor and display process can reduce $NF_3$ emmision by 99.95 %. It is optimistic that the mission for the reduction of greenhouse gas emission can be realized in these LCD manufacturing companies in Korea.

현재 반도체 및 LCD(Liquid Crystal Display) 제조 공정에 널리 사용하는 $NF_3$는 국제적으로 대기중 배출량에 대한 규제를 실시 중인 온실가스 중의 하나다. 온실가스의 배출량 감축을 위하여 국내 대상 산업체들은 $NF_3$ 배출량의 감소에 지속적으로 노력을 해 오고 있다. 본 연구는 LCD를 제조하는 국내 3사에 설치된 $NF_3$ 처리용 전기가열방식 스크러버(scrubber)의 제거효율(DRE, Destruction and Removal Efficiency)과 process chamber에서의 $NF_3$ 사용 비율(use rate in process)을 측정하였다. 스크러버의 효율을 정확하게 측정하기 위하여, 비활성 기체인 He을 일정 유량으로 주입시켜주는 방법으로 시료를 채취하고, 정밀 가스질량분석기(Gas-MS)를 이용하여 시료 중 화학종들의 분압을 측정하였다. 세 회사에 설치되어 있는 스크러버의 효율을 측정한 결과, 2004년 이전에 설치한 스크러버의와 그 이후 개선한 스크러버의 DRE는 각각 52%와 95% 이상임을 확인하였다. 또한 Process chamber의 $NF_3$ 사용 효율은 1세대 및 2세대 공정라인에 설치한 RFSC(Radio Frequency Source Chamber)의 경우 75% 보다 낮지만, 3세대 이상 라인에 설치한 RPSC(Remote Plasma Source Chamber)의 경우는 95% 이상으로 측정이 되었다. 반도체 및 디스플레이 공정에 개선된 스크러버와 RPSC식 process chamber를 사용할 경우 $NF_3$ 배출량을 99.95% 이상 줄일 수 있을 것으로 예상된다. 따라서 $NF_3$에 대한 국내 3사의 온실가스 감축 목표가 성공적으로 이루어 질 것으로 예상된다.

Keywords

References

  1. M. T. Radoiu, Radiation Physics and Chemistry, 69, 113 (2004) https://doi.org/10.1016/S0969-806X(03)00455-9
  2. W. W. Stoffels, E. Stoffels, K. Tachibana, J. Vac. Sci. Technol. A, 6, 87 (1998)
  3. R. J. Van Brunt, J. T. Herron, IEEE Trans. Electr. Insul., 25, 75 (1990) https://doi.org/10.1109/14.45235
  4. W. T. Tsai, H. P. Chen, W. Y. Hsien, J. Loss Prevention in the Process Industries, 15, 65 (2002) https://doi.org/10.1016/S0950-4230(01)00067-5
  5. J. S. Kim, D. M. Moon, K. Kato, L. A. Konopelko, Y. A. Kustikov, F. R. Guenther, G. Rhodrick, Metrologia, 43, Tech. Suppl., 08008 (2006) https://doi.org/10.1088/0026-1394/43/1A/08008
  6. International Organization for Standardization, ISO 6142:2001 Gas analysis-Preparation of calibration gas mixtures-Gravimetric methods, 2nd edition, (2001)
  7. J. Y. Lee, H. S. Yoo, K. Marti, D. M. Moon, J. B. Lee, J. S. Kim, J. Geophys. Res. 111, no. D05302. (2006)
  8. IPCC (Intergovernmental Panel on Climate Change), Good practice guidance and uncertainty management in national greenhouse gas inventories. Geneva: IPCC, Chapter 3.6 (2000). www.ipcc-nggip.iges.or.jp
  9. S. N. Li, J. N. Hsu, H. Y. Shih, S. J. Lin, J. L. Hong, Solid State Technol. 45, 157 (2002)
  10. A. E. Guber, U. Kohler, J. Mol. Struct. 348, 209 (1995) https://doi.org/10.1016/0022-2860(95)08626-7
  11. T. Fujii, S. Arulmozhiraja, M. Nakamura, Y. Shiokawa, Anal. Chem. 73, 2937 (2001) https://doi.org/10.1021/ac001200w
  12. E. Stoffels, W. W. Stoff els, K. Tachibana, Rev. Sci. Instrum. 69, 116 (1998) https://doi.org/10.1063/1.1148486
  13. S. N. Li, J. N. Hsu, G. H. Leo, Semiconductor Fabtech. 14th edition, 63 (2005)
  14. J. B. Lee, D. M. Moon, J. H. Souk, S. Y. Lee, J. Y. Lee, J. S. Kim, 2006 (submitted to Chem. Eng. Tech.)
  15. S. Y. Park, J. S. Kim, J. B. Lee, M. B. Esler, R. S. Davis, R. I. Wielgosz, Metrologia, 41, 387 (2004) https://doi.org/10.1088/0026-1394/41/6/005
  16. J. Y. Lee, H. S. Yoo, J. S. Park, K. J. Hwang, J. S. Kim, J. Chem. Edu. 82, 288 (2005) https://doi.org/10.1021/ed082p288