DOI QR코드

DOI QR Code

Photocatalytic effect for the pitch-coated TiO2

Pitch 코팅된 TiO2에 대한 광촉매 효과

  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Bae, Jang-Soon (Department of Industrial Chemistry, Dankook University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • 진명량 (한서대학교, 신소재공학과) ;
  • 배장순 (단국대학교, 공업화학과) ;
  • 오원춘 (한서대학교, 신소재공학과)
  • Received : 2006.06.17
  • Accepted : 2006.08.01
  • Published : 2006.08.28

Abstract

Pitch-coated anatase $TiO_2$ typed was prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the pitch-coated $TiO_2$ sample series showed a good adsorptivity and photo decomposition activity. The BET surface area depends on the pitch contents, which was made by changing the mixing ratios of the pitch with the raw $TiO_2$. The SEM results present to the characterization of porous texture on the pitch-coated $TiO_2$ sample and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the pitch-coated $TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of pitchcoated $TiO_2$ with Uv/Vis spectra between absorbance and time could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.

본 연구에서 $CCl_4$용해 방법을 이용하여 피치 코팅한 $TiO_2$(anatase형)시료를 제조하였으며, 피치와 $TiO_2$의 비율이 피치 처리한 $TiO_2$시료의 광활성에 미치는 영향에 대하여 고찰하였다. BET 비표면적은 피치의 함량에 의존하였으며 피치의 함량이 증가함에 따라 증가하는 특성을 보였다. 시료의 표면상태 및 원소분석은 SEM와 EDX를 통하여 분석하였으며, 미세구조는 XRD를 통해서 연구하였다. 또한 제조한 광촉매의 광활성으로 UV/VIS를 조사한 것을 특성분석을 하였다. SEM사진으로 보면 피치의 첨가량이 많기 때문에 피치의 분포상태를 분명하게 관찰할 수 있으며, EDX원소 분석결과는 피치 코팅한 $TiO_2$ 광촉매에서 C, O, S와 Ti 같은 네 가지 원소가 존재하였다. 코팅과정 후에도 $TiO_2$ 상은 anatase형을 나타내고 있었다. 피치 코팅한 $TiO_2$은 처리하지 않는 $TiO_2$보다 MB의 UV광분해 효력이 더 우수하였다. 그리고 시료에 $TiO_2$양이 감소함에 따라 MB의 UV광분해 효력이 감소하였다.

Keywords

References

  1. D. F. Ollis, E. Pelizzetti, and N. Serpone, 'Photocatalysis fundamentals and applications', ed. N. Serpone and E. Pelizzetti, Wiley, New York (1989)
  2. F. B. Li and X. Z. Li, Appl. Catal. A: Gen, 5910, 1 (2001)
  3. A. K. Datye, G. Riegel, J. R. Bolton, M. Huang, and M. R. Prairie, J. Solid State Chem., 115, 236 (1995) https://doi.org/10.1006/jssc.1995.1126
  4. A Fujishima and K. Honda, Nature, 238(7), 37 (1972) https://doi.org/10.1038/238037a0
  5. J. Matos, J. Laine, and J. M. Herrmann, J. Catal., 200, 10 (2000) https://doi.org/10.1006/jcat.2001.3191
  6. B. J. Park, S. J. Park, and S. K. Ryu, J. Colloid Interface Sci., 217, 142 (1999) https://doi.org/10.1006/jcis.1999.6357
  7. N. Takeda, N. Iwata, T. Torimoto, and H. Yoneyama, J. Catal., 177, 240 (1998) https://doi.org/10.1006/jcat.1998.2117
  8. M. Yoshikawa, A. Yasutaka, and I. Mochida, Appl. Catal. A: Gen., 173, 239 (1998) https://doi.org/10.1016/S0926-860X(98)00182-3
  9. S. J. Parkand K. D. Kim, J. Colloid Interface Sci., 212, 186 (1999) https://doi.org/10.1006/jcis.1998.6063
  10. Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, J. Solar Energy Eng., 118, 123 (1996) https://doi.org/10.1115/1.2847984
  11. Z. Ding, X. Hu, P. L. Yue, G. Q. Lu, and P. F. Greenfield, Catal. Today, 68, 173 (2001) https://doi.org/10.1016/S0920-5861(01)00298-X
  12. N. Negishi and K. Takewchi, Mater. Lett., 38, 150 (1999) https://doi.org/10.1016/S0167-577X(98)00150-5
  13. S. Ahuja and T. R. N. Kutty, J. Photochem. Photobiol. A-Chem., 97, 99 (1996) https://doi.org/10.1016/1010-6030(96)04324-9
  14. S. Nagaoka, Y. Hamasaki, S. Ishihara, M. Nafata, K. Iio, C. Nagasawa, and H. Ihara, J. Mol. Catal. A: Chem., 177, 255 (2002) https://doi.org/10.1016/S1381-1169(01)00271-0
  15. D. Beydiun, H. Tse, R. Amal, G. Low, and S. McEvoy, J. Mol. Catal. A: Chem., 177, 265 (2002) https://doi.org/10.1016/S1381-1169(01)00272-2
  16. Z. Ding, G. Lu, and P. Greenfield, J. Colloid Interface Sci., 232, 1 (2000) https://doi.org/10.1006/jcis.2000.7154
  17. T. Torimoto, S. Ito, S. Juwabata, and H. Yoneyama, Environ. Sci. Technol., 30, 1275 (1996) https://doi.org/10.1021/es950483k
  18. T. Torimoto, and Y. Okawa, N. Takeda, and H. Yoneyama, J. Photochem. Photobiol. A-Chem., 103, 153 (1997) https://doi.org/10.1016/S1010-6030(96)04503-0
  19. K. Kinoshita, 'Carbon-electrochemical and physicochemical properties', ed. B. Warren, John Wiley, New York, (1998)
  20. S. L. Park and J. S. Kim, Carbon, 39, 2011 (2001) https://doi.org/10.1016/S0008-6223(00)00077-4
  21. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700-1708 (2005) https://doi.org/10.1016/j.carbon.2005.02.013
  22. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 44, 325-333 (2006) https://doi.org/10.1016/j.carbon.2005.07.033