NR 발포를 사용한 자기 밀폐형 고무 재료의 연구

A Study of Self-Sealing Rubber Material Using Foamed Natural Rubber

  • 발행 : 2006.06.30

초록

본 연구에서는 연료 누출 시 자기 밀폐성을 갖는 연료 탱크에 사용할 수 있는 고무재료의 개발을 목적으로 발포천연고무에 카본블랙과 가공유를 $10{\sim}30phr$범위에서 혼련하여 함량에 따른 발포고무의 가황 특성, 밀도, 팽윤실험 및 표면형상을 조사하였다. 미가황 고무의 가황 특성은 가공유에 의해 $ts_2$$Tc_{90}$이 느려졌으나 카본블랙에 의해서는 뚜렷한 경향이 나타나지 않았다. 발포에 의한 밀도의 차는 가황 전과 비교해 1/5로 밀도가 감소하였다. 발포천연고무의 팽윤실험 측정 결과, 연료 C, 이소옥탄, 톨루엔에서는 2분 이내에 모든 발포고무에서 자기밀폐작용의 90% 이상이 완료되었다. 전자주사현미경(SEM)으로 표면형상을 관찰한 결과 sodium bicarbonate에 의한 발포는 비균등한 연속 발포 셀로 나타났다.

The self-sealing rubber material for a fuel cell which has self-sealing ability, in case of fuel leakage, was studied. Cure characteristics, density, swelling, and surface morphology of foamed natural rubber were investigated with carbon black and with processing oil within the range of $10{\sim}30phr$. The rheological properties indicated that the value of $ts_2$ and the value of $Tc_{90}$ were increased with increasing a content of processing oil, while carbon black did not show a similar trend. A difference in density by foaming was decreased to one fifth scale compared to the initial value. According to the swelling test of foamed natural rubber in fuel C, isooctane and toluene, all the self-sealing action was finished in two minutes. From the SEM image for the surface of rubber compounding, a foaming by sodium bicarbonate was found to be unequal and consecutive foaming cell.

키워드

참고문헌

  1. C. Kumnuantip and N. Sombatsompop, 'Dynamic mechanical properties and swelling behaviour of NR/reclaimed rubber blends', Materials Letters, 57, 3167 (2003) https://doi.org/10.1016/S0167-577X(03)00019-3
  2. A. I. Medalia, 'Evaluation of result of tension fatigue resistance tests on vulcanized rubber', Rubber Chemistry and Technology, 53, 988 (1980) https://doi.org/10.5254/1.3535074
  3. J. U. Lee, W. K. Kim and B. H. Kim, 'A Study on the electrical property of polypropylene thin film', J. Kor. Ins. of Rubb. Ind., 21, 121 (1986)
  4. J. B, Thomas. 'Permeation tube approach to long-term use of automatic sampler retention index standards', J. Chromatography A., 704, 157 (1995) https://doi.org/10.1016/0021-9673(95)00184-O
  5. G. Peter, L. Goran and S. Goran, 'In-situ measurements of gas permeability in fuel cell membranes using a cylindrical microelectode', J. Electroanalytical Chemistry, 158, 115 (2002)
  6. L. A. Wood, 'Standard ozone resistance testing of wax protected rubbers', Rubber Chemistry and Technology, 53, 116 (1980) https://doi.org/10.5254/1.3535021
  7. A I. Medalia, 'Evaluation of result of tension fatigue resistance tests on vulcanized rubber', Rubber Chemistry and Technology, 53, 988 (1980) https://doi.org/10.5254/1.3535074
  8. P. Maccone, M. Apostolo and G. Akroldi, 'Thermal degradation studies of electron beam cured terpolymeric fluorocarbon rubber', Macromolecules, 33, 1656 (2000) https://doi.org/10.1021/ma990982w
  9. P. B. Jana and S. K. De, 'Thermal aging, degradation and swelling of fluororubber', Polym. Comm., 32, 376 (1991)
  10. K. H. Lee, S. J. Kim, B. K. Kim, I. S. Park and C. Y. Park, 'Prediction of the state of cure', J. Kor. Ins. of Rubb. Ind., 29, 5 (1994)