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The Ordered Weighted Averaging (OWA) Operator Weighting
Functions with Constant Value of Orness and Application to
the Multiple Criteria Decision Making Problems

Byeong Seok Ahn

Actual type of aggregation performed by an ordered weighted averaging (OWA) operator heavily de-
pends upon the weighting vector. A number of approaches have been suggested for obtaining the asso-
ciated weights. In this paper, we present analytic forms of OWA operator weighting functions, each of
which has such properties as rank-based weights and constant value of omess, irespective of number of
objectives aggregated. Specifically, we propose four analytic forms of OWA weighting functions that can
be positioned at 0.25, 0.334, 0.667, and 0.75 on the omess scale. The merits for using these weights over
other weighting schemes can be mentioned in a couple of ways. Firstly, we can efficiently utiize the analytic
forms of weighting functions without solving complicated mathematical programs once the degree of omess
is specified a priori by decision maker. Secondly, combined with wel-known OWA operator weighfs such
as max, min, and average, any weighting vectors, having a desired value of omess and being independent
of the number of objectives, can be generated. This can be accomplished by convex combinations of
predetermined weighting functions having constant values of omess. Findlly, in terms of a measure of dis-
persion, newly generated weighting vectors show just a few discrepancies with weights generated by max-
imum entropy OWA.
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[. Introduction

Decision making involves choosing some
course of action among various alternatives. In
almost all decision making problems, there are
several criteria for judging alternatives. A mul-
tiple criteria decision making method largely
consists of two phases: 1) decision problem con-
struction and information specification, and 2)
aggregation and exploitation [Ahn, 2003; Ahn
2005]. Among others, synthesizing judgments is
an important part of multiple criteria decision
making methods. Yager [1988] introduced the
ordered weighted averaging (OWA) operator to
provide a method for aggregating multiple in-
puts that lie between the max and min oper-
ators. As the term ‘ordered’” implies, the OWA
operator pursues a nonlinear aggregation of ob-
jects considered, different from the existent
multicriteria aggregation methods such as, for
instance, multiattribute utility theory (MAUT)
[Winterfeldt and Edwards, 1986; Keeney and
Raiffa, 1976] and simple weighted sum [Hwang
and Lin, 1986]. In the short time since its first
appearance, the OWA operators have been
used in an astonishingly wide range of applica-
tions in the fields including neural networks
[Yager, 1995; Yager, 1992], database systems
[Yager, 1987], fuzzy logic controllers [Yager,
1991; Yager and Filev, 1992], group decision
making [Herrera et al., 1995; Herrera et al.,
1996a: Herrera et al., 1996b] and so on. The main
reason for this is their great flexibility to model
a wide variety of aggregators, as their nature
is defined by a weighting vector, and not by
a single parameter [Salido and Murakami, 2003}.
By appropriately selecting the weighting vector,
it is possible to model different kinds of rela-

tions among the criteria aggregated. Recently,
Xu and Da [2003] presented a survey of the
main aggregation operators that encompass a
broad range of existing operators (more than
20 aggregators). It is clear that actual type of
aggregation performed by an OWA operator
depends upon the weighting vector, which plays
key role in aggregation process. Filev and Yager
[1998] presented a way of obtaining weights as-
sociated with the OWA aggregation in the sit-
uation where we have observed data on the ar-
guments and the aggregated value.

Another appealing point was the introduc-
tion of the concept of orness and the definition
of an orness measure that could establish how
‘orlike” a certain operator is, based on the val-
ues of its weighting function. Thus the measure
can be interpreted as the mode of decision mak-
ing circumstances by conferring the semantic
meaning to the weights used in aggregation
process. If an aggregated value is close to the
maximum of the ordered objects, the aggrega-
tion pursues the ‘orlike’ aggregation. If an ag-
gregated value is close to the minimum of the
ordered objects, on the other hand, the ag-
gregation pursues the ‘andlike’ aggregation.
This concept perfectly coincides with the tradi-
tional decision making theory in which max de-
cision principle denotes the optimistic decision
context and min decision principle denotes the
pessimistic decision context.

On the other hand, Yager [1988], based on
a measure of entropy, proposed a measure of
dispersion which gauges the degree of utiliza-
tion of information in the sense that each of
weighting vectors considered can be different
to each other by degree of dispersion though
they have the same degree of orness. One of the
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first approaches, suggested by O’'Hagan [1990],
determines a special class of OWA operators
having maximal entropy of the OWA weights
for a given level of orness, algorithmically based
on the solution of a constrained optimization
problem. The resulting weights are called max-
imum entropy OWA (MEOWA) weights for a
given degree of orness and analytic forms and
property for these weights are further inves-
tigated by several researchers [Filev and Yager,
1995; Fuller and Majlender, 2001]. Instead of
maximizing the degree of dispersion, Fuller and
Majlender [2003] presented a method of deriv-
ing the minimal variability weighting vector for
any level of orness, using Kuhn-Tucker second-
order sufficiency conditions for optimality.
In this paper, we present analytic forms of
OWA operator weighting functions, each of
which has properties such as rank-based weights
and constant degree of orness, irrespective of
number of objectives considered. Specifically, the
four analytic forms of OWA operator weights
can be positioned at 0.25, 0.334, 0.667, 0.75 re-
spectively on the orness scale. The merits of us-
ing these kinds of analytic forms of weights can
be outlined in a couple of ways. First, we can
efficiently utilize them without solving compli-
cated mathematical programs once a value of
orness is specified a priori by the decision maker.
Second, combined with already well-known
OWA operator weights such as max (orness =
1), min (orness = 0), and average (orness = 0.5),
any weighting vectors, having constant degree
of orness, can be constructed as well. This can
be accomplished by convex combinations of the
weighting vectors already known to have con-
stant values of orness. Finally, the proposed
OWA operator weights with constant level of

orness display just a few discrepancies in terms
of dispersion with weights derived by MEOWA
method. Further, this statement applies to the
weights generated from predetermined weight-
ing vectors with constant values of orness.

The paper is organized as follows: in Section
I, we will briefly review Yager’s definition for
the OWA operators and their orness measure.
The analytical forms of operator weights func-
tions with constant level of orness and their
properties are investigated in Section M. In
Section IV, possible applications to the multiple
criteria decision making problems are dis-
cussed, followed by concluding remarks in
Section V.

I. The OWA operators and
their orness measure

Ant OWA operator [Yager, 1988] of dimen-
sion 7 is a mapping f: B"—R that has an asso-
ciated weighting n vector W= [w;,w,, -, w,]7,
such that w; € [0,1] and 37_,w, =1, and where
the function value f(ay,a,,--,a,) determines
the aggregated value of arguments the q,,q,,

-+-,a, in such a manner that
i
f(a1;a21”';an) = szbz’
i=1

where b; is the ith largest element of the collec-
tion of the n aggregated objects a,,a,,:*,a,, thus

satisfying the relation
Mni [az] = f(a17a2} ) an) = Mawi [az] :

The fundamental aspect of the OWA oper-
ator is the re-ordering step, in particular, an ar-

gument a; is not associated with a particular
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weight «;, but rather a weight «; is associated
with a particular ordered position, i of the argu-
ment q),ay, --,a, thus yielding a nonlinear
aggregation. Its generality lies in the fact that
by selecting appropriate weights, different ag-
gregation can be implemented. Specifically, by
appropriately selecting the weights in W we can
emphasize different arguments based upon
their positions in the ordering. Thus, if we place
most of the weights near the top of W, we can
emphasize the higher scores, while placing the
weights near the bottom of W emphasizes the
lower scores in the aggregation [Yager, 1988].

Example. Assume W= [0.4,0.3,0.2,0.1]7.
Then, £(0.7,1.0,0.3,0.6) = (0.4)(1) + (0.3)(0.7)
+ (0.2)(0.6) + (0.1)(0.3)=0.76.

Yager introduced two characterizing meas-
ures associated with weighting vector W of the
OWA operator. The first one, the measure of
orness of the aggregation, is defined as

orness (W) = 2= 1 Z(n—z)w,

n—1:¢

and it characterizes the degree to which the ag-
gregation is like an or operation.

Example. Assume W= [0.4,0.3,0.2,0.1]7 then
orness (W) = (1/3)(3(0.4)+2(0.3) +1(0.2))
= 0.666.

If we consider the special cases of OWA op-
erators,

W =1[1,0,0,---,0]7 (maximum operator),
Wi =10,0,0,---,1]7 (minimum operator),

W:Me = [l/n,l/n,l/n,---, 1/n]T

(average operator),

then it can easily be shown that

(1) orness(W') =1,
(2) orness(W;) =0,
(3) orness(Wy,) =0.5.

A measure of andness for an OWA operator
with weights W can also defined as

andness (W) = 1 —orness (W)

S p—— g(n—i)wi.

n—1 ¢

The OWA operators with many of the
weights near the top will be an ‘orlike” operator
{orness{( W) = 0.5), while those operators with
most of the weights at the bottom will be
‘andlike’ operators (orness (W) < 0.5). As to the
semantics of the OWA’s measure of orness,
Yager suggests that, based on Hurwicz's model
[Chernoff and Moses, 1959], the measure of or-
ness can be interpreted as a measure of opti-
mism of the decision making, while the meas-
ure of andness is a measure of pessimism.
Another measure, the dispersion of weights
and a way of its determination while satisfying
the prescribed ornsss will be discussed in the

next section.

. Analytic forms of oper-
ator weights with con-
stant level of orness and
their properties

In what follows, we present four analytic
OWA weights functions via some theorems and
corollaries.

Theorem 1. The OWA weights function in (1),
applying the orness measure of aggregation, re-
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sults in the constant value of orness (i.e., opti-
mism) 3,4, irrespective of the number of ob-
jectives.

w=1y1 )

Proof. From a substitution of the OWA weights
function into the definition of orness measure
and some manipulations, then we can obtain
the following result,

orness (W) = nil i[(n—i)sz":i]
Ao 53805
R ODERp)
)
pkyce 1)("2 )3

Corollary 1. The orness value of OWA weights
function in (2) results in the constant value of
orness (i.e., optimism) 1,4, irrespective of the
number of objectives.

:

.ca+

S
wi_nj=1(n—j+1)' @)
Proof. Substituting the OWA weights function
in (2) into the definition of the orness measure,
then, we obtain the following result.

In' multiattribute value theory (MAVT), the
OWA weights w(3,4) = [w, (3/4), - w,(3/4)],
having a constant value of orness 3,4, are called
centroid (center of mass) weights in efforts to
seek to identify a single set of weights that is
representative of all the possible weight com-
binations that are admissible, consistent with
the established linear inequality constraints on
the weights w, > w, >---> w, [Winterfeldt and
Edwards, 1986; Stillwell et al.,, 1981]. Edwards
and Barron [1986] give a straightforward for-
mula for determining the centroid point for the
case where all criteria are ranked simply in the
The points should be
the centroid of the feasible region of admissible

form w, > w, >---> w,.

sets of weight values and specifically they as-
sign weights as follow, where w,(3/4) is the
weight of the most important objective, w,(3,/4)
the weight of the second most important ob-
jective, and so on. For n objectives, -

w(34)=01+12+1/8+-+1/mn)/n
wy(3/4)=(04+124+1/8+-+1/mn)/n

u.)n(3/4) =0+0+0+-+1/n)/n.

Further, they suggest that by eliciting rank
orders of importance over all criteria and using
rank-ordered centroid weights, one has nearly
the same accuracy as is found with more com-
plex methods. The detailed weights of w(3/4)
by indicated number of objectives from 2 to 10
are shown in <Table 1> below.

Theorem 2. The orness value of OWA weights
function in (3) results in the constant value of
orness (ie., optimism) 2/3, irrespective of the
number of objectives.

H16A M1%
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3 . n+1) ®)  Using }]zz=-ﬂiﬂ-—_%§ll___l,
El(n —j+1) 24
£
Proof. Substituting the OWA weights function orness W)2
in (3) into the definition of the orness measure, =T Dnmsl) (n (n*+n)—-(02n+1)-
then, we obtain the following result.

(n+1) (n+1)2n+1)) 2
nn2 Lo 6n J_E'

orness (W)
n ) 2 1—4
12 (("_1) : J:T:;:l_)z)') The detailed weights of w(2,8) = [w, (2/3),
2 .-, w,(2/3)] by indicated number of objectives

§X0¥+n)—mn+1%i+i%

- (rn=1)n(n+1) 4~ from 2 to 10 are shown in <Table 2>.

<Table 1> The OWA weights W(3/4) for indicated number of objectives

1 7500 6111 5208 4567 4083 3704 3397 3143 2929
2 2500 2778 2708 2567 2417 2276 2147 2032 1929
3 11 1458 1567 1583 1561 1522 1477 1429
4 0625 0900 1028 1085 1106 1106 109
5 .0400 0611 0728 0793 0828 .0846
6 0278 0442 0543 0606 0646
7 0204 0335 0421 0479
8 0156 0262 .0336
9 0123 0211
10 0100

<Table 2> The OWA weights W(2/3) for indicated number of objectives

1 .6667 .5000 .4000 3333 .2857 .2500 2222 .2000 1818
2 3333 3333 .3000 2667 2381 2143 194 1778 1636
3 1667 .2000 .2000 1905 1786 1667 1556 1455
4 .1000 1333 1429 1429 1389 1333 1273
5 0667 0952 1071 1111 1110 1091
6 0476 0714 .0833 .0889 0909
7 0357 .0556 .0667 0727
8 .0278 0444 .0545
9 0222 0364
10 0182
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Corollary 2. The orness value of OWA weights
function in (4) results in the constant value of

orness (i.e., optimism) 1,3, irrespective of the
number of objectives.

we— i _ 21 . 4
J z":(n_j+1) n(n+1) @

Proof. Substituting the OWA weights function
in (4) into the definition of the orness measure,
then, we obtain the following result.

orness (W)= nil zn](("—i) ) an—iT))

- (n.m“)
(n—1)n(n+1) 2
_n n+1!§2n+1!):l.

6 3

The formulas for generating the OWA

weights and their function values are outlined
in <Table 3>.

Example. Assume the objective arguments to be
aggregated are (0.7, 1.0, 0.3, 0.6) and an orness
we want to set is 0.75. Then the formula in (1)
results in weights, W= [0.52,0.27,0.15,0.06]7.

Hence, a function value is

f(0.7,1.0,0.3,0.6) = (0.52)(1) + (0.27)(0.7)
+(0.15)(0.6) + (0.06)(0.3)
=0.82.

With the same objective arguments, let us as-
sume that an orness we want to set is 0.67. Then
the formula in (3) results in weights, W= [0.4,
0.3,0.2,0.1]%7. Hence, a function value is

£(0.7,1.0,0.3,0.6) = (0.4)(1) + (0.3)(0.7)
+(0.2)(0.6) + (0.1)(0.3)

<Table 3> Formulas for specifying weights of OWA operators

1 1

w=1 w;=0, j=1 1 b

w; :-7-11-12:_} 3/4

= 12 0
vy | A ==
w,=1lw;=0, j=n 0 b,

1 n~1b lnb
n—1 E i+n2i

=1 t=1

Hied M1
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Theorem 3. If v, are any collection of OWA
weights having the property that w, > w; for
i< j, then 0.5 < 2 < 1. If w are any collection
of OWA weights having the property that
w; <wj; for i< j, then 0 < 2 <05.

Proof. See the paper by Filev and Yager [1998].

Corollary 3. The weights w(2,3) and W(3/4),
of which orness belongs to the interval
0.5 < £2 < 1, maintain the relation w;, > w; for
i<j. The weights w(1,4) and w(1/3), of
which orness belongs to the interval 0 < 2 <
0.5, also maintain the relation w; <, for i < j.

Proof. For the weights W/(3,4), it holds that

w; (3/4) > w;(3/4) for i<; due to the fact
1/m3R_i1/k>1/n3%_1/k and for the weights
W(2/3), it holds that w, (2/8) > w;(2/3) for i < j
due to the fact 2(n+1-i)/m(n+1)>2(n+1
—j)/mnn+1).
weights W(1,4) and w(1,3) in a similar
manner.

This can be proved for the

As a simple extension of the OWA operator
weights shown in (3) and (4), we can construct
a family of OWA weights functions that have
following general forms

wy = =ik 1)

n

(n—j+1)F

It is obvious that w; > w; (or w; < w;) for i < j,
k=2 and w, +-+w, =1, thus satisfying rank-
based OWA weights condition. The orness of
the OWA weights function for k=2, for in-

stance, can be derived in a simple form such
as

C —z) (n —-z+1)2
= Z(n —j+1)?
7j=1

orness(W) =

_ 3n+2
22n+1)"

after some computations and using the fact
znjﬁ :(ﬂ%i)-)z. Though the orness of the
1=1

OWA weights function for k=2 is not in the
form of a constant value of orness as is in the
formulas (1)-(4), the orness converges at the
number 3/4 as the number of objectives in-

3n+2 3 . The

creases, thus yleldmg lin i ST 1) —

orness of the weights are denoted below for var-

ious numbers of objectives.

From the weights shown in <Table 1> and
<Table 2>, it is conceived that the W(2/3)
weights are much more flatter that W(3,4)
weights. To prove this conjecture, we define

where @, =1 and Q. > @,_,.

Theorem 4. The W(2/3) weights are flatter
than W(3,/4) weights. In other words, ,(3/4)
> @ (2/8) for k=2,3,--,n where Q,(3/4)=
Zi-1w;(3/4) and Q.(2/8) = X5 w;(2/8).

92 YLy
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On the other hand,

@:(2/3) = zz: (n+1-7) _%(k—i—?nk—kz).

nin+1) n+1

Thus, Q. (3/4) > Q.(2/3) holds.

We can also prove a relation Q. (1,43)> @,
(1/4) for 0 <2 <05 and k=2,3,--,n, an-
alogously. Yager [1988] mentioned that assum-
ing W and W’ are two weighting functions such
that for each k, @, > @/, then orness(W)
= oreness(W). It can be easily seen that this
statement holds in our cases, thus yielding

W(3/4)

orness ( =3/4 > orness(W(2/3))
=2/3(Q3/4) > Q:(2/8)),
orness(W(1,/3)) = 1/3 > orness(W(1/4))

=14(Q(1/3) > Q.(1/4)).

A choice between the weights Ww(3,/4) and
W(2/3) depends in part on one’s belief about
the steepness of the true weights guiding a de-
cisionmaker’s preferences and decision sit-
uation considered. The greater the concen-
tration of values in the first few objectives, that
is ‘orlike’, the more attractive the w(3/4)
weights method.

In what follows, we shall investigate the
properties of proposed OWA weights in terms
of a measure of dispersion, which is defined as

n
Ewi In w;.
=1

disp (W) =—

This measure can be used to gauge the de-
gree to which the information about the in-
dividual aggregates is used in the aggregation
process. We note that since this dispersion is
really a measure of entropy and thus the fol-
lowing properties are valid

1) if w;=1 for some i then the dispersion is
minimum and disp(W) =0

2) the dispersion is maximum if w, =1/ and
disp(W)=Inn.

O’Hagan [1990] determines a special class of
OWA operators having a maximal entropy of
the OWA weights for some prescribed level of
orness. This approach is based on the solution
of the following mathematical programming

problem:
n
maximize disp{W)=— Zwl In w;
|
n
subject to orness(W) = iw; = a,
0<a<l,

wiFwy+tw, =1, 0 <w;, <1, (5)

where o is a desired value of orness.

One interesting point to be noted is that if
a weighting vector W is optimal for problem
(5) under some prescribed value of orness a,
then its reverse, denoted by W#, and defined
as wf=w, ,,, is also optimal for problem (5)
under value of orness (1 —a) and disp (%) =
disp(W). It is easy to show that the proposed
weighting functions W(k) for k=1/4,1,/3,2/3,
3/4, though they are not weights based on the
maximal entropy, satisfy these properties. Then,
our concern is that the proposed weights func-

H16d M1
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tions W(k) for k=1,4,1/3,2/3,3/4 lie in what
certain level of dispersion, compared to the
weights computed by maximal entropy meth-
od. This consideration can be set forth by each
comparison of MEOWA weights and the weights
of proposed weights functions for prescribed
values of orness 0.75 and 0.667. In <Table 4>
and <Table 5>, entropy values are shown when
orness is fixed at 0.75 and 0.667 respectively. As
can be seen in the two tables, small differences
in entropy values can be found only at third
decimal places of the numbers. This fact holds
true for the MEOWA weights and the proposed
weights when orness is fixed 0.25 and 0.334
respectively. The other concern we want to ad-
dress falls into a case that the decision maker
wants to make an aggregation at some other
value of orness except four constant values of
orness. This consideration is depicted in <Figure
1> in which solid arrows signify the identified
weights functions with constant value of orness
and the dashed arrows signify alreacy well-
known weights functions. A way of determin-
ing other OWA operator weights is described
in Theorem 5 below.

Theorem 5. The convex combinations of any
two OWA weights functions with constant val-
ue of orness results in OWA weights which have
also constant value of orness irrespective of the
number of objectives.

P4

n

&~

1

Proof. When a desired value of orness is k, let
us denote newly generated OWA weights as
W™ (k). The weights W"v(k) can be con-
structed by a convex combination of W(k') and
W(k") that are already identified weights with
constant value of orness k', k" respectively, that is

wi* = fuw; (K) + (1 - B, (K) for g€ [0,1].

Then we can always find g € [0,1] that sat-
isfies 8- kK'+ (1—3) - ¥ =k and applying this
newly generated OWA weights into the orness
measure of aggregation, we obtain

new

orness (W) = — ;(n—z’ Y]
= S i) (k)
+ (1= B)w, (K))
= L B =i (o)
+ 205 i) ()
=G k+(1-0) - (K)=k

Example. Suppose that we want to generate
OWA operator weights which have orness 0.7
from the OWA weights functions W(2/3) and
Wi3/4), then we simply solve a following equa-

tion

BW(2/3)+ (1—B)W(3/4) = 0.7.
B-2+1-p)-3 =07,

%

ul

— — R

h p——-=--

O Hm-———

02 03 04 0.

0

[
6

orness

0.7 0.8 1.0

<Figure 1> Identified weighting functions with constant value of orness
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which results in g=0.6. Thus if n = 3, newly
generated OWA operator weights with orness
=0.7 becomes

W¥(0.7) = [(0.6)(0.5)+(04)(0.611),(0.6)(0.333)
+(0.4)(0.278),(0.6)(0.167)+(0.4)(0.111)]
= [0.544,0.311,0.145].

The orness of the newly generated weights is,

of course,
orness(W'(0.7)) = [(0.5)((2)(0.544)+(1)(0.311))= 0.7

One interesting point to be noted is that a
convex combination with g=0.5 of the OWA
weights functions (3) and (4) exactly coincides
with the OWA weights W, = [1/n,1/n,--,1/n],
which is stated in Corollary 4.

<Table 4> Individual weights and entropy values of MEOWA and proposed weighting method with

omess = 0.75

2 750 250

3 6l6 268 116

4 526 268 137 069

5 459 261 148 084 (48

6 408 250 154 094 058 .03%6

7367 239 15 101 066 043 028

8 334 28 15 106 072 049 033 023

9 306 217 153 108 077 054 (88 027 019

10 283 206 150 110 080 (058 043 031 023 .017

562
01
1148
134
1507
1646
1768
1876
1973

750 250 562
611 278 111 901
521 271 146 063 1148
457 257 157 090 .040 1.343
408 242 158 103 061 028 1.505
370 28 15 109 073 04 020 1644
340 215 152 111 079 054 034 016 1.765
314 203 148 111 083 061 .42 026 .012 1.873
293 193 143 110 085 065 .48 034 .021 .010 1.970

<Table 5>.Individual weights and entropy values of MEOWA and

omess = 0.667

2 667 333

3 514 305 181

4 421 277 182 120

5 38 B2 17 125 08

6 311 230 170 126 .093 069

7 26 22 162 15 0% 074 056

8 247 1% 154 12 097 076 060 .048

9 24 181 147 119 (9 (078 063 051 .41

10 205 169 140 115 095 078 065 .053 044 036

637
1013
1284
149
1670
1817
1946
2.060
2162

proposed weighting method with

667 333 637
500 333 167 1011
400 300 .200 100 1.280
333 267 200 133 .067 1.49%0
286 238 191 143 095 .048 1.662
250 214 179 143 107 071 036 1.809
222194 167 139 111 083 056 .028 1.937
200 178 156 133 111 089 067 .04 022 2,050
182 164 146 127 109 091 073 055 036 018 2151
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Corollary 4. A convex combination of W(2/3)
and W(1,/4) with 3=0.5 results in the well-
known OWA weights W,,. = [1/n,1/n,-,1/n].

Proof. w) = Lu,(2/8) + Lu,(18)

_2(r+1-i) 2
2n{n+1) 2n(n+1)"°

-1

- n - WAve

The OWA operator weights with a desired val-
ue of orness can be constructed by using known
end points which encompass the desired point
of orness. The difficult is, however, that there
exist many alternatives to be chosen for the end
points. For instance, if we want to generate new
OWA operator weights with orness=0.7, then
we can make lots of combinations by differing
the parameter 8 which makes the weights locate
at the corresponding orness. The pairs of end

points such as (2,/3,3/4),(1,2,3/4), (1/3,3/4),

<Table 6> Individual weights and entropy values of
omess is fixed at 0.7

2 611
3 54 311 14 974
4 M8 288 178 085 1236
5 38 263 183 116 .05 1441; .
6 33 240 178 127 082 40 1.610| .
7 298 220 170 129 093 .061 .030 1.754|.
8 269 203 161 128 .098 072 .47 023 1.880
9 26 188 152 124 100 078 .057 037 018 1991
10 226 175 144 120 099 080 .063 .46 .030 .015 2.092

and (1/4,3/4) considering 8= 0.6,0.2,0.12,0.1
can be chosen as the options. Our consideration
is that which of them is the most appropriate
to use in the aggregation process. As one of cri-
teria that can be considered, let us suppose that
we select newly generated weights that result
in maximum entropy. We investigate the differ-
ence of dispersion among the newly generated
weights, and the difference of dispersion be-
tween MEOWA weights and newly generated
weights at fixed level of orness 0.7 in <Table 6>
and <Table 7>, In this case, only small differ-
ences can be found only at third decimal places
of the numbers in all comparisons of con-
sideration. Further we found that these results
also apply to any other desired values of orness
between 0.25 and 0.75 since different parame-
ter 3, depending on the different end points,
smoothes the differences of weights and thus
finally make the weights close to each other.

newly generated weights using endpoints when

700
556
467

g 7

297
274
254

300 611 611
289 156 975 975
267 167 100 1.237| 1.237
245 165 112 072 1.443( 1443
227 160 116 .082 .056 1613} 1.614
211 153 115 087 064 045 1.757| 1.759
197 147 113 088 .068 052 .037 1.883| 1.885
185 140 111 .088 071 056 043 .032 1.99] 1.997
174 134 108 088 072 058 .47 .037 028 2.096( 2.098

Note) * maximum entropy of OWA operator weights when orness is fixed at 0.7

96 ZIJEHFHAT

H16H HM15



£} UE JHER BR WM YHH 230 A3

fjo

Z+

P

rr

St Az 8l

Ok

7k5A g=o| CR|Z ALY 2Holle| &8

i

<Table 7> Individual weights and entropy values of newly generated weights using endpoinis when

omess is fixed at 0.7

2 .700 .300 611
3 558 284 158 975
4 470 262 164 103 1.237
5 410 242 162 111 075 1442
6 365 224 156 113 .082 .059 1612
7 330 209 150 113 085 .065 .48 1.757
8 302 19 144 111 .08 068 .053 040 1.882|.
9 279 184 138 108 086 .069 .056 044 035 1.994 .
10 260 174 132 105 .085 070 .057 047 088 .031 2.0%

700

5ol .
A75
415 .
370
335 .

265

300 611 611
278 161 974| 975
258 158 108 1.236| 1.237
240 157 107 082 1441 1443
224 153 108 079 .066 1611 1.614
209 148 109 081 063 .055 1.755| 1.759
197 142 107 082 (064 .052 .048 1.880| 1.885
186 137 106 .083 .066 053 044 .043 1.991| 1.997
176 132 103 .083 .067 054 045 .038 .038 2.092| 2.098

IV. Discussions

Assume we have a decision environment in
which we have a payoff matrix

¢ ¢ - C,
A ey oap e oagy
Ay ay ay oay,
Am A1 A " Oy

In the above matrix, a set A={A1, Ay, An}
corresponds to a set of alternatives and a set
C={Gi, Gy, Cu} corresponds to the possible
state of nature. In the above, 4; indicates the
payoff for selecting alternative A; when the
state of nature is C;. In the decision making un-
der uncertainty environment, knowledge of the
state of nature is unavailable. A number of ap-
proaches have been suggested for addressing
this problem, based upon the concept of a deci-
sion attitude associated with the decision
maker. The two classic attitudes that have been

suggested are the pessimistic and optimistic.
Assuming a pessimistic attitude, one calculates

Hp(Ai)=Mi1‘1]' tlij.

Then we select, as the optimal alternatiave,
the A" such that

Hp(A)=Max; Hp(A).
Thus we see that
Hp(A'y=Max; Min; a;.
This approach is the so called maximin strat-
egy, which is widely used in game theory. With
the same line of reasoning, maximax strategy is

applied when we assume an optimistic attitude,
thus yielding

Ho(A')=Max; Max; aj.

A strategy lying between these two extremes,
called the Hurwicz criteria, has been suggested.
This strategy involves calculating for some 0< ¢ <1

H16H HM1E
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<Table 8> Semantic meanings for the orness values derived by the formulas

Optimistic 1, 0 1,0, 0) 1

Moderately Optimistic (0.750, 0.250) (0.611, 0.278, 0.111) 0.75
Rather Optimistic (0.667, 0.333) (0.500, 0.333, 0.167) 0.67
Neutral (0.50, 0.50) (0.333, 0.333, 0.333) 0.5
Rather Pessimistic (0.333, 0.667) (0.167, 0.333, 0.500) 0.34
Moderately Pessimistic (0.250, 0.750) (0.111, 0.278, 0.611) 0.25
Pessimistic © 1 (0, 0, 1) 0

HH(A,')= a Hp(Ai)'l'(l‘ a ) Ho(Ai).

The concept of OWA operators can provide
a unifying and generalizing formulation for this
problem. In particular, we associate with our
decision process on OWA function F and its as-
sociated weighting vector W. Then for each A;
we calculate

Huy(A)=F(aun, an, ***, Gin).

The optimal selection becomes the A* such
that Hu,{A*) is maximal.

We note here that when W=W. we get the
maximin strategy and when W=W* we get the
maximax. The introduction of the OWA frame-
work provides a more general approach to the
solution of the decision making under un-
certainty problem by allowing for a whole spec-
trum of potential ways of aggregating the pay-
offs for the individual alternatives. In this frame-
work, a useful unifying concept can be obtained
with the aid of the measure of orness associated
with an OWA operator. In particular, the meas-
ure of orness can be used as a measure of the
decision maker’s degree of optimism. The closer
an OWA operator is to the pure or, the more opti-
mistic s/he is about obtaining the best solution.

These statements can be outlined such as

o If W=WW* (orness = 1), maxi=im[Maxj=1]:
maximax strategy (i.e., optimistic)

o If W=W. (orness = 0), max=1,[minj1,]:
maximin strategy (i.e., pessimistic)

o If w=1/n (orness = 1/2), La Place criteria

If we confer semantic meanings for the or-
ness values other than orness values introduced
above, it is possible to aggregate, taking into
account decision maker’s modes as in <Table
8>, multiple values of alternatives.

V. Concluding remarks

Since the OWA operator was introduced, nu-
merous research efforts have been exerted to
determine the OWA operator weights. To this
end, we present four analytic forms of OWA
operator weighting functions of which the or-
ness is set to constant value irrespective of the
number of objectives. Further, based on the four
analytic weighting functions and well-known
OWA operator weights with max, min, average,
any new weighting vectors can be constructed
on the orness scale [0, 1] whose orness is also
constant irrespective of the number of objec-
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tives. Further, the degree of utilizing informa-
tion in aggregation process is very close to that
of weights by MEOWA method. Thus in a sit-
uation where a priori degree of optimism is

specified from decision maker, we only have to
apply the analytic weights function or generate
OWA weights that have a desired value of or-
ness to perform a multicriteria aggregation.
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