Normalization of Microarray Data: Single-labeled and Dual-labeled Arrays

  • Do, Jin Hwan (Bio-Food and Drug Research Center, Konkuk University) ;
  • Choi, Dong-Kug (Department of Biotechnology, Konkuk University)
  • Received : 2006.07.05
  • Accepted : 2006.07.07
  • Published : 2006.12.31

Abstract

DNA microarray is a powerful tool for high-throughput analysis of biological systems. Various computational tools have been created to facilitate the analysis of the large volume of data produced in DNA microarray experiments. Normalization is a critical step for obtaining data that are reliable and usable for subsequent analysis such as identification of differentially expressed genes and clustering. A variety of normalization methods have been proposed over the past few years, but no methods are still perfect. Various assumptions are often taken in the process of normalization. Therefore, the knowledge of underlying assumption and principle of normalization would be helpful for the correct analysis of microarray data. We present a review of normalization techniques from single-labeled platforms such as the Affymetrix GeneChip array to dual-labeled platforms like spotted array focusing on their principles and assumptions.

Keywords

Acknowledgement

Supported by : Korea Science & Engineering Foundation

References

  1. Astrand, M. (2003) Contrast normalization of oligonucleotide arrays. J. comput. Biol. 10, 95−102 https://doi.org/10.1089/106652703763255697
  2. Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185−193 https://doi.org/10.1093/bioinformatics/19.2.185
  3. Cleveland, W. S. and Devlin, S. J. (1998) Locally-weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596−610
  4. Colantuoni, C., Henry, G., Zeger, S., and Pevsner, J. (2002) SNOMAD (Standardization and NOmalization of MicroArray Data. Bioinformatics 18, 1540−1541
  5. Dobbin, K. K., Kawasaki, E. S., Petersen, D. W., and Simon, R. M. (2005) Charactering dye bias in microarray experiments. Bioinformatics 21, 2430−2437 https://doi.org/10.1093/bioinformatics/bti378
  6. Dombkowski, A. A. et al. (2004) Gene-specific dye bias in microarray reference designs. FEBS Lett. 560, 120.124 https://doi.org/10.1016/S0014-5793(04)00083-3
  7. Draghici, S. (2003) Data analysis tools for DNA microarrays. Chapter 12, Chapman & Hall/CRC, NY
  8. Dudoit, S., Yang, Y. H., Callow, M. J., and Speed, T. P. (2002) Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat. Sin. 12, 111−139
  9. Edwards, D. (2003) Non-linear normalization and background correction in one-channel cDNA microarray studies. Bioinformatics 19, 825−833 https://doi.org/10.1093/bioinformatics/btg083
  10. Goryachev, A. B., MacGregor, P. F., and Edwards, A. M. (2001) Unfolding of microarray data. J. Comput. Biol. 8, 443−461
  11. Holloway, A. J., van Laar, R. K., Tothill, R. W., and Bowtell, D. (2002) Options available-from start to finish-for obtaining data from DNA microarrays II. Nat. Genet. 32 (suppl. 2), 481−489 https://doi.org/10.1038/ng1030
  12. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., et al. (2003a) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatics 4, 249−264 https://doi.org/10.1093/biostatistics/4.2.249
  13. Irizarry, R. A., Bolstad, B. M., Collin, F., Cope, L. M., Hobbs, B., et al. (2003b) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 https://doi.org/10.1093/nar/gng015
  14. Irizarry, R. A., Wu, Z., and Jaffee, H. A. (2006) Comparison of Affymetrix GeneChip expression measures. Bioinformatics 22, 789−794 https://doi.org/10.1093/bioinformatics/btk046
  15. Kerr, M. K., Martin, M., and Churchill, G. A. (2000) Analysis of variance for gene expression microarray data. J. Comput. Biol. 7, 819−837
  16. Lee, M. L., Kuo, F. C., Whitmore, G. A., and Sklar, J. (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl. Acad. Sci. USA 97, 9834−9839
  17. Li, C. and Wong, W. H. (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31−36
  18. Lockhart, D. J., Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., et al. (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675−1680 https://doi.org/10.1038/nbt1296-1675
  19. Park, T., Yi, S. G., Kang, S. H., Lee, S. Y., Lee, Y. S., et al. (2003) Evaluation of normalization methods for microarray data. BMC Bioinformatics 4, 33 https://doi.org/10.1186/1471-2105-4-33
  20. Quackenbush, J. (2002) Microarray data normalization and transformation. Nat. Genet. 32 (Suppl. 2), 496−501
  21. Schadt, E., Li, C., Su, C., and Wong, W. H. (2001) Analyzing high-density oligonucleotide gene expression array data. J. Cell. Biochem. 80, 192−202 https://doi.org/10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W
  22. Schadt, E., Li, C., Eliss, B., and Wong, W. H. (2002) Feature extraction and normalization algorithms for high-density oligonucleotide gene expression data. J. Cell. Biochem. 84 (S37), 120−125 https://doi.org/10.1002/jcb.10073
  23. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467−470
  24. Tseng, G. C., Oh, M. K., Rohlin, L., Liao, J. C., and Wong, W. H. (2001) Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Res. 29, 2549−2557
  25. Tukey, J. W. (1977) Exploratory Data Analysis, Chapter 11, Addison-Wesley, MA
  26. Uchida, S., Nishida, Y., Satou, K., Muta, S., Tashiro, K., et al. (2005) Detection and normalization of biases present in spotted cDNA microarray data: a composite method addressing dye, intensity-dependent, spatially-dependent, and printorder biases. DNA Res. 12, 1−7 https://doi.org/10.1093/dnares/12.1.1
  27. Yang, Y. H., Dudoit, S., Luu, P., and Speed, T. P. (2001) Normalization for cDNA microarray data. In Microarrays: optical technologies and informatics volume 4266, Bittner, M., Chen, Y., Dorsel, A., and Dougherty, E. R. (eds.), San Jose, CA, USA: SPIE, 141−152
  28. Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple systemic variation. Nucleic Acids Res. 30, e15 https://doi.org/10.1093/nar/30.4.e15
  29. Zhang, Q., Ushijima, R., Kawai, T., and Tanaka, H. (2004) Which to use? - microarray data analysis in input and output data processing. Chem-Bio Informatics J. 4, 56−72 https://doi.org/10.1273/cbij.4.56
  30. Zhao, Y., Li, M.-C., and Simon, R. (2005) An adaptive method for cDNA microarray normalization. BMC Bioinformatics 6, 28 https://doi.org/10.1186/1471-2105-6-28