Propylene Epoxidation using Titanium-containing Zeolite Catalysts

티타늄 함유 제올라이트 촉매를 이용한 프로필렌 에폭시화반응

  • Ban, Han-Ju (Department of Chemical Engineering, Inha university) ;
  • Lee, Kyu-Yong (Department of Chemical Engineering, Inha university) ;
  • Lee, Joong-Ki (Department of Chemical Engineering, Inha university) ;
  • Chung, Sung-Taik (Department of Chemical Engineering, Inha university) ;
  • Ahn, Wha-Seung (Department of Chemical Engineering, Inha university)
  • 반한주 (인하대학교 화학공학과) ;
  • 이규용 (인하대학교 화학공학과) ;
  • 이중기 (인하대학교 화학공학과) ;
  • 정성택 (인하대학교 화학공학과) ;
  • 안화승 (인하대학교 화학공학과)
  • Received : 2005.10.13
  • Accepted : 2006.01.11
  • Published : 2006.04.30

Abstract

Propylene epoxidation by $H_2O_2$ (30% aqueous) as oxidant was studied in a semi-batch reactor using TS-1 catalyst: Effects of reaction temperature, time, pressure, solvent, catalyst and $H_2O_2$ concentration on $H_2O_2$ conversion (limiting reagent) and product distribution were investigated. Potential inhibition by propylene oxide on the epoxidation rate was also examined. Ti-MCM-22 with MWW zeolytic structure was found to exhibit better performance than TS-1 with MFI structure, provide that a proper choice of solvent(acetonitrile) is made.

티타늄 함유 제올라이트 촉매 TS-1과 Ti-MCM-22를 이용하여 과산화수소를 산화제로 한 프로필렌 에폭시화반응을 수행하였으며, 반응에 미치는 촉매량, 한계 반응물인 과산화수소의 양, 교반 속도, 반응 온도, 압력, 용매 및 생성물 억제 효과를 조사하였다. TS-1은 우수한 부분 산화반응 촉매로 표준 반응조건($45^{\circ}C$, 7 atm, 0.5 g catalyst, 2.5 wt% $H_2O_2$, 메탄올 용매, 1,000 rpm 교반)에서 95% 이상의 $H_2O_2$ 전화율과 94% 이상의 산화프로필렌(propylene oxide, PO) 선택도를 얻을 수 있었다. 한편 아세토나이트릴(acetonitrile) 용매 하에서 반응 실험을 한 결과 Ti-MCM-22는 99%의 $H_2O_2$ 전화율과 100%에 근접하는 산화프로필렌 선택도를 보이며, 양론비에 가까운 수율을 보였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Bu, J., Yun, S. H. and Rhee, H. K., 'Epoxidation of n-Hexene and Cyclohexene over Titanium-Containing Catalysts,' Korean J. Chem. Eng., 17(1), 76-80(2000) https://doi.org/10.1007/BF02789257
  2. Ko, Y. S. and Ahn, W. S., 'Characterization and Catalytic Properties of Titanium Silicalite-1 Catalyst,' Korean J. Chem. Eng., 15(2), 182-191(1998) https://doi.org/10.1007/BF02707071
  3. Clerici, M. G., Bellussi, G. and Romano, U., 'Synthesis of Propylene Oxide from Propylene and Hydrogen Peroxide Catalyzed by Titanium Silicalite,' J. Catal., 129, 159-167(1991) https://doi.org/10.1016/0021-9517(91)90019-Z
  4. Thiele, G. R. and Roland, E., 'Propylene Epoxidation with Hydrogen Peroxide and Titanium Silicalite Catalyst: Activity, Deactivation and Regeneration of the Catalyst,' J. Mol. Catal. A: Chemical, 117, 351-356(1997) https://doi.org/10.1016/S1381-1169(96)00266-X
  5. Chen, L. Y., Chuah, G. K. and Jaenicke, S., 'Propylene Epoxidation with Hydrogen Peroxide Catalyzed by Molecular Sieves Containing Framework Titanium,' J. Mol. Catal. A: Chemical, 132, 281-292(1998) https://doi.org/10.1016/S1381-1169(97)00276-8
  6. Li, G., Wang, X. S., Yan, H. S., Liu, Y. H. and Liu, X. W., 'Epoxidation of Propylene Using Supported Titanium Silicalite Catalysts,' Appl. Catal. A: General, 236, 1-7(2002) https://doi.org/10.1016/S0926-860X(02)00288-0
  7. Laufer, W., Meiers, R. and Holderich, W., 'Propylene Epoxidation with Hydrogen Peroxide over Palladium Containing Titanium Silic,' J. Mol. Catal. A: Chemical, 141, 215-221(1999) https://doi.org/10.1016/S1381-1169(98)00265-9
  8. Laufer, W. and Hoelderich, W. F., 'Direct Oxidation of Propylene and Other Olefins on Precious Metal Containing Ti-catalysts,' Appl. Catal. A: General, 213, 163-171(2001) https://doi.org/10.1016/S0926-860X(00)00900-5
  9. Jenzer, G., Mallat, T., Maciejewski, M., Eigenmann, F. and Baiker, A., 'Continuous Epoxidation of Propylene with Oxygen and Hydrogen on a Pd-Pt/TS-1 Catalyst,' Appl. Catal. A: General, 208, 125-133(2001) https://doi.org/10.1016/S0926-860X(00)00689-X
  10. Wang, C., Y., Wang, B. G., Meng, X. K. and Mi, Z. T., 'Study on Process Integration of the Production of Propylene Oxide and Hydrogen Peroxide,' Catal. Today, 74, 15-21(2002) https://doi.org/10.1016/S0920-5861(01)00526-0
  11. Corma, A., Corell, C. and Perez-Pariente, J., 'Synthesis and Characterization of the MCM-22 Zeolite,' Zeolites, 15, 2-8(1995) https://doi.org/10.1016/0144-2449(94)00013-I
  12. Guray, I., Warzywoda, J., Bac, N. and Jr Sacco, A., 'Synthesis of Zeolite MCM-22 Under Rotating and Static Conditions,' Micropor. Mesopor. Mater., 31, 241-251(1999) https://doi.org/10.1016/S1387-1811(99)00075-X
  13. He, Y. J., Nivarthy, G. S., Eder, F., Seshan, K. and A. Lercher, J., 'Synthesis, Characterization and Catalytic Activity of the Pillared Molecular Sieve MCM-36,' Micropor. Mesopor. Mater., 25, 207-224(1998) https://doi.org/10.1016/S1387-1811(98)00210-8
  14. Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T., 'A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations,' J. Phys. Chem. B., 105, 2897-2905(2001) https://doi.org/10.1021/jp002816s
  15. Wu, P., Tatsumi, T., Komatsu, T. and Yashima, T., 'A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes,' J. Catal., 202, 245-255 (2001) https://doi.org/10.1006/jcat.2001.3278
  16. Wu, P. and Tatsumi, T., 'Preparation of B-free Ti-MWW Through Reversible Structural Conversion,' CHEM. COMMUN., 1026-1027 (2002)
  17. Yoon, B. S. and Ahn, W. S., 'Synthesis, Characterization and Catalytic Properties of Titanium-containing Zeolite Beta Catalysts,' HWAHAK KONGHAK, 40(1), 1-8(2002)