Etch Characteristics of NbOx Nanopillar Mask for the Formation of Si Nanodot Arrays

Si Nanodot 배열의 형성을 위한 NbOx 나노기둥 마스크의 식각 특성

  • Park, Ik Hyun (Department of Chemical Engineering, Inha University) ;
  • Lee, Jang Woo (Department of Chemical Engineering, Inha University) ;
  • Chung, Chee Won (Department of Chemical Engineering, Inha University)
  • 박익현 (인하대학교 화학공학과) ;
  • 이장우 (인하대학교 화학공학과) ;
  • 정지원 (인하대학교 화학공학과)
  • Received : 2005.03.04
  • Accepted : 2006.03.27
  • Published : 2006.06.10

Abstract

We investigated the usefulness of $NbO_{x}$ nanopillars as an etching mask of dry etching for the formation of Si nanodot arrays. The $NbO_{x}$ nanopillar arrays were prepared by the anodic aluminum oxidation process of Al and Nb thin films. The etch rate and etch profile of $NbO_{x}$ nanopillar arrays were examined by varying the experimental conditions such as the concentration of etch gas, coil rf power, and dc bias voltage in the reactive ion etch system using the inductively coupled plasma. As the concentration of $Cl_{2}$ gas increased, the etch rate of $NbO_{x}$nanopillars decreased. With increasing coil rf power and dc bias voltage, the etch rates were found to increase. The etch characteristics and etch mechanism of $NbO_{x}$ nanopillars were investigated by varying the etch time under the selected etch conditions.

Si nanodot 배열을 형성하기 위하여 $NbO_{x}$ nanopillar를 건식식각 공정의 식각마스크로써 이용하기 위한 가능성이 조사되었다. $NbO_{x}$ nanopillar는 Al과 Nb의 양극산화 공정을 이용하여 준비되었다. $NbO_{x}$ nanopillar의 식각속도와 식각프로파일은 고밀도 플라즈마를 이용한 반응성 이온 식각법에 의해서 식각가스의 농도와 coil rf power, 그리고 dc bias voltage를 각각 변화시키면서 조사 되었다. $Cl_{2}$ 가스의 농도가 증가할수록 $NbO_{x}$ nanopillar의 식각속도는 감소하였고 coil rf power와 dc bias voltage의 증가는 식각속도의 상승을 초래했다. 선택된 식각조건에서 식각시간을 변화하여 $NbO_{x}$ nanopillar의 식각특성 및 식각메커니즘이 조사되었다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. P. Normand, E. Kapetanakis, P. Dimitrakis, D. Skarlatos, D. Tsoukalas, K. Beltsios, A. Claverie, G. Benassayag, C. Bonafos, M. Carrada, N. Cherkashin, V. Soncini, A. Agarwal, Ch. Sohl, and M. Ameen, Microelectron. Eng., 67, 629 (2003) https://doi.org/10.1016/S0167-9317(03)00124-2
  2. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto Jpn. J. Appl. Phys., 38, 425 (1999) https://doi.org/10.1143/JJAP.38.425
  3. Y. Kim, K. H. Park, W. C. Choi, T. H. Chung, H. J. Bark, J. Y. Yi, and J. Jeong, Mater. Sci. Eng. B, 83, 145 (2001) https://doi.org/10.1016/S0921-5107(01)00510-4
  4. S. Lee, Y. S. Shim, H. Y. Cho, D. Y. Kim, T. W. Kim, and K. L. Wang, Jpn. J. Appl. Phys., 42, 7180 (2003) https://doi.org/10.1143/JJAP.42.7180
  5. S. Lee, Y. S. Shim, H. Y. Cho, T. W. Kang, D. Y. Kim, Y. H. Lee, and K. L. Wang, Thin Solid Films, 451, 379 (2004) https://doi.org/10.1016/j.tsf.2003.10.132
  6. S. H. Jeong, Y. K. Cha, I. K. Yoo, Y. S. Song, and C. W. Chung, Chem. Mater., 16, 1612 (2004) https://doi.org/10.1021/cm0497677
  7. A. Mozalev, M. Sakairi, I. Saeki, and H. Takahashi, Electrochim. Acta, 48, 3155 (2003) https://doi.org/10.1016/S0013-4686(03)00345-1