Improvement of Interfacial Adhesion for Surface treated Rice Husk Flour-Filled Polypropylene Bio-Composites

표면처리에 의한 왕겨분말-폴리프로필렌 바이오복합재의 계면 접착력 향상

  • Lee, Byoung-Ho (Lab. of Adhesion & Bio-composites, Major in Environmental Materials Science, Department of Forest Sciences, College of Agriculture & Life Science, Seoul National University) ;
  • Kim, Hee-Soo (Lab. of Adhesion & Bio-composites, Major in Environmental Materials Science, Department of Forest Sciences, College of Agriculture & Life Science, Seoul National University) ;
  • Choi, Seung-Woo (Lab. of Adhesion & Bio-composites, Major in Environmental Materials Science, Department of Forest Sciences, College of Agriculture & Life Science, Seoul National University) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-composites, Major in Environmental Materials Science, Department of Forest Sciences, College of Agriculture & Life Science, Seoul National University)
  • 이병호 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 김희수 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 최성우 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실) ;
  • 김현중 (서울대학교 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실)
  • Received : 2006.04.10
  • Accepted : 2006.04.29
  • Published : 2006.05.25

Abstract

The main objective of this study is the improvement of the interfacial adhesion of RHF-polypropylene (PP) bio-composites through NaOH and acetic acid treated RHF. After manufacturing of untreated and NaOH and acetic acid treated RHF filled PP bio-composites, the effect on interfacial adhesion of bio-composites was investigated. Tensile strength of the bio-composites made from treated RHF with NaOH and acetic acid was higher than that of the untreated bio-composites. The RHF surface before and after NaOH and acetic acid treatment was clearly confirmed by scanning electron microscopy (SEM) micrograph. It was found that both treatments result in a removal of impurity materials of RHF surface by SEM micrographs. The chemical structures of untreated and NaOH and acetic acid treated RHF were confirmed by fourier transform infrared (FTIR). The crystallization structure and crystallinity of non-treated, NaOH and acetic acid treated RHF were investigated by wide-angle X-ray scattering (WAXS).

본 연구의 목적은 왕겨분말을 NaOH와 acetic acid 처리를 통하여 왕겨분말-폴리프로필렌(PP) 바이오복합재의 계면 결합을 증가시키는 것이다. 처리하지 않은 왕겨분말, NaOH와 acetic acid 처리된 왕겨분말을 충전제로 사용하여 바이오복합재를 제조한 후 왕겨분말의 처리에 대한 효과를 조사하였다. NaOH와 acetic acid 처리된 왕겨분말이 충전된 바이오복합재의 인장강도가 처리하지 않은 왕겨분말이 충전된 바이오복합재보다 증가하였다. NaOH와 acetic acid로 처리 전후의 왕겨분말 표면은 scanning electron microscopy (SEM)의 사진으로 명확하게 관찰할 수 있었다. SEM을 이용하여 측정한 결과 왕겨분말 표면의 이물질이 제거된 것을 발견 할 수 있었다. NaOH와 acetic acid 처리된 왕겨분말의 화학적 구조는 fourier transform infrared (FTIR)을 이용하여 분석하였다. 처리하지 않은 왕겨분말, NaOH와 acetic acid로 처리된 왕겨분말의 결정화구조 및 결정화도는 wide-angle X-ray scattering (WAXS)을 이용하여 분석하였다.

Keywords

Acknowledgement

Supported by : 교육인적자원부

References

  1. 농림부. 2004. 농림통계연보
  2. Belgacem M. N., P. Bataille, and S. Sapeiha. 1994. Effect of corona modification on the mechanicalproperties of polypropylene cellulose composites. Journal of Applied Polymer Science. 53: 379-385 https://doi.org/10.1002/app.1994.070530401
  3. Bledzki A. K. and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progess in Polymer Science. 24: 221- 274 https://doi.org/10.1016/S0079-6700(98)00018-5
  4. Cao Y, S. Shibata, and I. fukumoto. 2006. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A : Applied Science and Manufacturing. 37(3): 423-429 https://doi.org/10.1016/j.compositesa.2005.05.045
  5. Felix J. M. and P. Gatenholm. 1994. Effect of transcrystalline morphology on interfacial adhesion in cellulose polypropylene composites. Journal of materials science 29(11): 3043-3049 https://doi.org/10.1007/BF01117618
  6. Gassan J. and AK. Bledzki. 1999. Alkali treatment of jute fibers: relationship between structure and mechanical properties. Journal of Applied Polymer Science 71: 623 - 629 https://doi.org/10.1002/(SICI)1097-4628(19990124)71:4<623::AID-APP14>3.0.CO;2-K
  7. Gauthier R, C.Joly, A. C.Coupas, H. Gauthier, and M. Escoubes. 1998. Interfaces in polyolefin/ cellulosic fiber composites: Chemical coupling, morphology, correlation with adhesion and aging in moisture. Polymer Composites 19: 287- 300 https://doi.org/10.1002/pc.10102
  8. Khalil H. P. S. A., H. Ismail, H. D. Rozman, and M. N. Ahmad. 2000. The effect of acetylation on interfacial shear strength plant fibres and various matrices. European Polymer Journal 37: 1037-1045 https://doi.org/10.1016/S0014-3057(00)00199-3
  9. Kim Hyun-Joong and Young-Geun Eom. 2001. Thermogravimetric analysis of rice husk flour for a new raw material of lignocellulosic fiberthermoplastic polymer composites. Journal of the Korean Wood Science and Technology 20(3): 59-67
  10. Rong M. Z., M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng. 2001. The effect of fiber treatment on the mechanical properties of unidirectional sisalreinforced epoxy composites. Composites Science and Technolgy 61: 1437 -1447 https://doi.org/10.1016/S0266-3538(01)00046-X
  11. Sapieha S., J. F. Pupo, and H. Schreiber. 1989. Thermal degradation of cellulose-containing composites during processing. Journal of Applied Polymer Science 37(1); 233-240 https://doi.org/10.1002/app.1989.070370118
  12. Sreenivasan S., P. B. Iyer, and K. R. K. Iyer. 1996. Influence of delignification and alkali treatment on the fine structure of coir fibers (cocos nucifera). Journal of Materials Science 31: 721-726 https://doi.org/10.1007/BF00367891
  13. Tripathy S. S., L.D. Landro, D. Fontanelli, A. Marcetti, and G. Levita. 2000. mechanical properties of jute fibers and interface strength with an epoxy resin. Journal of Applied Polymer Science 75(13): 1585-1596 https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1585::AID-APP4>3.0.CO;2-Q
  14. Vera A. A. and A. Vazquez. 2006. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A. In Press