Effects of Water Temperature and Salinity on the Oxygen Consumption Rate of Juvenile Spotted Sea Bass, Lateolabrax maculatus

점농어, Lateolabrax maculatus 치어의 산소 소비율에 미치는 수온과 염분의 영향

  • Oh, Sung-Yong (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Shin, Chang Hoon (Agribrands Purina Korea Inc.) ;
  • Jo, Jae-Yoon (Department of Aquaculture, Pukyong National University) ;
  • Noh, Choong Hwan (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Myoung, Jung-Goo (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Kim, Jong-Man (Marine Resources Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양생물자원연구본부) ;
  • 신창훈 ((주)애그리브랜드 퓨리나코리아) ;
  • 조재윤 (부경대학교 양식학과) ;
  • 노충환 (한국해양연구원 해양생물자원연구본부) ;
  • 명정구 (한국해양연구원 해양생물자원연구본부) ;
  • 김종만 (한국해양연구원 해양생물자원연구본부)
  • Received : 2006.06.12
  • Accepted : 2006.08.04
  • Published : 2006.09.30

Abstract

An experiment was conducted to investigate the effects of three water temperatures (15, 20 and $25^{\circ}C$) in combination with three salinities (0, 15 and 30 psu) on the oxygen consumption rate of juvenile spotted sea bass, Lateolabrax maculatus (mean body weight $5.5{\pm}0.3g$). The oxygen consumption rates of L. maculatus were measured in triplicate for 24 hours using a continuous flow-through respirometer. Water temperature resulted in significant differences in the mean oxygen consumption rate of L. maculatus (p<0.001), but salinity and combinations of salinity and water temperature did not have (p>0.05). The oxygen consumption increased with increasing water temperatures in all experimental salinity regimes (p<001). Mean oxygen consumption rates at 15, 20 and $25^{\circ}C$ ranged 328.8~342.3, 433.9~441.0 and 651.5~659.9 mg $O_2\;kg^{-1}\;h^{-1}$, respectively. $Q_{10}$ values did not vary with salinity, bud varied with water temperature. $Q_{10}$ values ranged 1.63~1.75 between 15 and $20^{\circ}C$, 2.24~2.26 between 20 and $25^{\circ}C$, and 1.92~1.98 over the full temperature range. The energy loss by metabolic cost increased with increasing water temperatures in all experimental salinity regimes (p<0.001) Mean energy loss rates at 15, 20 and $25^{\circ}C$ ranged 224.6~233.8, 296.3~301.2 and $444.9{\sim}450.7kJ\;kg^{-1}\;d^{-1}$, respectively. These data suggest that the culture of juvenile spotted sea bass is possible without energy loss by salinity difference in freshwater as well as seawater after salinity acclimation. Thus, this result has an application for culture management and bioenergetic model for growth of this species.

점농어 치어의 수온과 염분에 따른 대사율 변화를 조사하기 위해 평균 무게 $5.5{\pm}0.3g$인 개체를 대상으로 수온 (15, 20, $25^{\circ}C$)과 염분 (0, 15, 30 psu)에 따른 산소 소비율을 측정하였다. 9가지 실험 조합의 산소 소비율은 유수식 형태의 호흡실을 이용하여 24시간 동안, 3반복 측정하였다. 수온은 점농어 치어의 산소 소비율에 유의한 영향을 미쳤지만(p<0.001), 염분과 수온 염분의 상호작용은 영향을 미치지 않았다(p>0.05). 각 염분 조건에서 수온 상승에 따라 산소 소비율은 유의적으로 증가하였다(p<0.001). 15, 20 그리고 $25^{\circ}C$에서의 시간당 평균 산소 소비율은 각각 328.8~342.3, 433.9~441.0 그리고 $651.5{\sim}659.9mg\;O_2\;kg^{-1}\;h^{-1}$이었다. $Q_{10}$ 값은 염분의 영향은 받지 않았으며, 수온에 따라 변하였다. 15~20, $20{\sim}25^{\circ}C$ 그리고 전 수온 범위에서의 $Q_{10}$ 값은 각각 1.63~1.75, 2.24~2.26 그리고 1.92~1.98이었다. 대사에 의한 에너지 손실은 수온의 증가에 따라 유의하게 증가하였다(p<0.001). 15, 20 그리고 $25^{\circ}C$에서의 호흡 대사로 인한 일간 평균 에너지 손실은 각각 224.6~233.8, 296.3~301.2 그리고 $444.9{\sim}450.7kJ\;kg^{-1}\;d^{-1}$이었다. 이 실험 결과는 점농어 치어를 염분 적응 후 염분 차이에 의한 에너지 손실 없이 해수뿐만 아니라 담수에서 사육이 가능하다는 것을 나타내며, 사육관리 및 성장을 위한 생체역학 모델 결정에 활용할 수 있다.

Keywords

Acknowledgement

Grant : 통영해역의 바다목장화 개발 연구

Supported by : 해양수산부

References

  1. Adams, S.M. and J.E. Breck. 1990. Bioenergetics. In: Schreck, C.B. and P.B. Moyle (eds.), Methods for Fish Biology. American Fisheries Society, Bethesda, MA, pp. 389-415
  2. Andre, S. and B. Adalto. 2002. Salinity effects of on osmoregulation and growth of euryhaline flounder, Paralichthys orbignyanus. J. Exp. Mar. Biol. Ecol., 269 : 187-196 https://doi.org/10.1016/S0022-0981(01)00395-1
  3. Bartell, S.M., J.E. Breck, R.H. Gardner and A.L. Brenket. 1986. Individual parameter perturbation and error analysis of fish bioenergetics models. Can. J. Fish. Aquat. Sci., 43 : 160-168 https://doi.org/10.1139/f86-018
  4. Boeuf, G. and P. Payan. 2001. How should salinity influence fish growth?. Comp. Biochem. Physiol., 130 : 411-423
  5. Brandt, S.B. and J. Kirsch. 1993. Spatially explicit models of striped bass growth rate potential in Chesapeake Bay. Trans. Am. Fish. Soc., 122 : 845-869 https://doi.org/10.1577/1548-8659(1993)122<0845:SEMOSB>2.3.CO;2
  6. Brandt, S.B., D.M. Mason and E.V. Patrick. 1992. Spatially -explicit models of fish growth rate. Fisheries, 17 : 23-35 https://doi.org/10.1577/1548-8446(1992)017<0023:SMOFGR>2.0.CO;2
  7. Brett, J. 1987. Environmental factors affecting growth. In: Hoare, W.H., D.J. Randall and S.R. Brett (eds.), Fish Physiology, vol. 8. Academic Press, pp. 252-259
  8. Bridges, C.R. 1988. Respiratory adaptations in intertidal fish. Am. Zool., 28 : 79-96
  9. Dalla Via, J., P. Villani, E. Gasteiger and H. Niederstätter. 1998. Oxygen consumption in sea bass fingerling Dicentrachus labrax exposed to acute salinity and temperature changes: metabolic basis for maximum stocking density estimations. Aquaculture, 169 : 303-313 https://doi.org/10.1016/S0044-8486(98)00375-5
  10. Elliot, J.M. and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19 : 195-201 https://doi.org/10.1007/BF00345305
  11. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. In: W.S. Hoar and D.J. Randall. (eds.), Fish Physiology. Academic Press, New York, pp. 1-98
  12. Jo, J.Y. and Y.H. Kim. 1999. Oxygen consumption of far eastern catfish, Silurus asotus, on the different water temperatures and photoperiods. J. Kor. Fish. Soc., 32 : 56-61
  13. Jobling, M. 1982. A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J. Fish Biol., 20 : 501-516 https://doi.org/10.1111/j.1095-8649.1982.tb03951.x
  14. Kaushik, S.J. 1998. Nutritional bioenergetics and estimation of waste production in non-salmonids. Aqua. Liv. Res., 11 : 211-217 https://doi.org/10.1016/S0990-7440(98)89003-7
  15. Kim, I.N., Y.J. Chang and J.Y. Kwon. 1995. The patterns of oxygen consumption in six species of marine fish. J. Kor. Fish. Soc., 28 : 373-381
  16. Kim, W.S., J.M. Kim, M.S. Kim, C.W. Park and H.T. Huh. 1998. Effects of sudden changes in salinity on endogenous rhythms of the spotted sea bass Lateolabrax sp. Mar. Biol., 131 : 219-225 https://doi.org/10.1007/s002270050314
  17. Lee, W.-K. and S.-W. Yang. 2002. Relationship between ovarian development and serum levels of gonadal steroid hormones, and induction of oocyte maturation and ovulation in the cultured female Korean spotted sea bass Lateolabrax maculatus (Jeom-nong-eo). Aquaculture, 207 : 169-183 https://doi.org/10.1016/S0044-8486(01)00728-1
  18. Lyytikäinen, T. and M. Jobling. 1998. The effects of temperature fluctuations on oxygen consumption and ammonia excretion of underyearling Lake Inari Arctic charr. J. Fish Biol., 52 : 1186-1198
  19. Mitsunaga, Y., W. Sakamoto, N. Arai and A. Kasai. 1999. Estimation of the metabolic rate of wild red sea bream Pagrus major in different water temperatures. Nippon Suisan Gakk., 65 : 48-54
  20. Oertzen, J.A. von. 1984. Influence of steady-state and fluctuating salinities on the oxygen consumption and activity of some brackish water shrimps and fishes. J. Exp. Mar. Biol. Ecol., 80 : 29-46 https://doi.org/10.1016/0022-0981(84)90092-3
  21. Parry, G. 1966. Osmotic adaptation in fishes. Biol. Rev., 41 : 392-444 https://doi.org/10.1111/j.1469-185X.1966.tb01499.x
  22. Ron, B., S.K. Shimoda, G.K. Iwama and E.G. Garu. 1995. Relationships among ration, salinity, $17{\alpha}-methyltestosterone$ and growth in the euryhaline tilapia, Oreochromis mossambicus. Aquaculture, 135 : 185-193 https://doi.org/10.1016/0044-8486(95)01013-0
  23. Spanopoulos-Hernández, M., C.A. Martínez-Palacios, R.C. Vanegas-Pérez, C. Rosas and L.G. Ross. 2005. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculture, 244 : 341-348 https://doi.org/10.1016/j.aquaculture.2004.11.023
  24. Wuenschel, M.J., A.R. Jugovich and J.A. Hare. 2005. Metabolic response of juvenile gray snapper (Lutjanus griseus) to temperature and salinity: Physiological cost of different environments. J. Exp. Mar. Biol. Ecol., 321 : 145-154 https://doi.org/10.1016/j.jembe.2005.01.009
  25. Wuenschel, M.J., R.G. Werner and D.E. Hoss. 2004. Effect of body size, temperature, and salinity on the routine metabolism of larval and juvenile spotted seatrout. J. Fish Biol., 64 : 1088-1102 https://doi.org/10.1111/j.1095-8649.2004.00374.x