Culture of Tricholoma matsutake Mycelium using Solid Matrix

고체 매질을 이용한 송이(松栮)(Tricholoma matsutake)균 배양

  • Lee, Wi Young (Div. of Biotechnology, Korea Forest Research Institute) ;
  • Ahn, Jin Kwon (Div. of Biotechnology, Korea Forest Research Institute) ;
  • Ka, Kang Hyeon (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Park, Hyun (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 생물공학과) ;
  • 안진권 (국립산림과학원 생물공학과) ;
  • 가강현 (국립산림과학원 화학미생물과) ;
  • 박현 (국립산림과학원 화학미생물과)
  • Received : 2006.03.23
  • Accepted : 2006.04.12
  • Published : 2006.09.30

Abstract

This study was conducted to develop optimal solid culture medium for Tricholoma matsutake. As the solid matrix, granitic soil, perlite, vermiculate, pine sawdust and peat moss were compared regarding their effected on mycelial growth. Ergosterol content which is a fungal wall component was used as the growth index of the mycelia. Among the various solid matrixes, the granitic soil, perlite and mixture of the two supported the growth most. Barely flour appeared to be very effective on the stimulating of the mycelial growth when added to the solid matrix. An mixture of the matrix contained an even (1:1:1:1, v/v/v/v) mixture of granitic soil, perlite, vermiculate and pine sawdust. T. matsutake started growth 2 weeks after inoculation and reached stationary growth phase after 8th weeks in the solid matrix mixture. The mycelial density in the solid matrix was 7 times higher than that in fairy-ring soil. In addition, 30~70% water content and 10% humus soil in the solid matrix also supported good growth suggesting that T. matsutake needs humus soil for a nutrient sources. The solid matrix developed in the present study could be used to study physiological characteristics of T. matsutake as well.

송이균의 환경조건에 따른 생장특성을 구명하고자 송이균을 고체매질을 이용하여 배양하였다. 고체매질에서의 송이균의 생장량은 에르고스테롤 함량을 분석하여 비교하였다. 송이균의 배양에 적합한 고체매질은 펄라이트와 마사토로 나타났으며 곡물 영양분으로는 보리가 우수하였다. 적정화된 고체배지에서 송이균의 생장은 송이균의 접종 후 2주부터 급격히 생장하였으며 8주 경에 최고의 생장량을 나타냈다. 송이균 배양에 적합한 수분함량은 30~70%였으며 부엽토 첨가(10%)가 생장에 더욱 양호하였다. 이러한 결과는 송이산지에서 토양유기물이 적절히 있고 토양수분이 높을 때에 송이균의 생장이 왕성할 것으로 추정할 수 있다. 고체배지에서 송이균사체를 접종 후 2주부터 급격히 생장하였으며 8주 경에 최고의 생장량을 나타냈다. 이러한 고체매질은 앞으로 송이 균사체의 생리연구에 이용될 수 있을 것이다.

Keywords

Acknowledgement

Grant : 송이 생산성 향상을 위한 재배기술 개발

Supported by : 농림부

References

  1. 강안석, 차동열, 김양섭, 박용환, 유창현. 1989. 송이생산과 관련되는 기후특성분석. 한국균학회지 17(2): 51-56
  2. 구창덕, 김재수, 이상희, 박재인, 안광태. 2003. 송이 균환내 토양수분의 사공간적 변화. 한국임학회지 92(6): 632-641
  3. 구창덕, 조남석, 김재수, 박재인, 최태호, 민두식. 2000. 표고 균사 배양체내 에르고스테롤 함량의 변이. 목재공학 28(1): 65-70
  4. 류천인, 남성우, 이지열, 이송규. 1980. 송이 증산에 관한 연구. 한국균학회지 8(1): 7-12
  5. 박 현, 김교수, 구창덕. 1995. 한국에서 9월의 기상인자가 송이 발생에 미치는 영향과 그 극복방안. 한국임학회지 84(4): 479-488
  6. 이위영, 안진권, 가상현, 권영진. 2003. 공기부양식 생물 반응기의 형태별 송이균사의 생장특성 비교. 한국균학회지 31(2): 89-95 https://doi.org/10.4489/KJM.2003.31.2.089
  7. 이위영, 안진권, 권오웅, 가강현, 권영진. 2002 풍선형 공기부양식 생물반응기를 이용한 송이 균사의 부유배양. 한국임학회지 91(3): 260-267
  8. 이태수, 김교수, 심우섭, 김세현, 주영환, 오세원, 조재명, 이지열. 1984. 송이인공 증식에 관한 연구(I). -송이 감염묘의 육성방법 개선-. 임시연보. 31: 109-123
  9. 조덕현, 이경순. 1995. 29개 지역의 10년간 송이발생림의 기후인자와 송이 발생량과의 상관관계. 한국균학회지 84(3): 277-285
  10. 한기학, 박준규, 정이근, 이춘수, 윤정희, 김원출, 이상규. 1988. 토양화학 분석법, 농업기술연구소 450pp
  11. 허태철, 박현, 가강현, 주성현. 2004. 송이 균환부에서 토양 이화학적 특성의 동태. 한국임학회지 93(1): 26-34
  12. 小川 眞. 1991.マツタケの生物學. 補訂版. 東京. 築地書館. 333pp
  13. 伊勝 武, 小川 眞. 1979.マツタケ菌の增殖法(II). 林内 植生の手入れとマツタケッロの增殖. 日林誌 61(5): 163-173
  14. Alexis, G.L., Vaario, L.M., Gill, W.M., Lapeyrie, F., Matsushita, N. and Suzuki, K. 2000. Rapid in vitro ectomycorrhizal infection on Pinus densiflora roots by Tricholoma matsutake. Mycoscience 41: 389-393 https://doi.org/10.1007/BF02463952
  15. Ekblad A., Wallande, H. and Nasholm, T. 1998. Chitin and ergosterol combined to measure total and living fungal biomass in ectomycorrhizas. New Phytologist 138: 143-149 https://doi.org/10.1046/j.1469-8137.1998.00891.x
  16. Hamada, M. 1950. Physiology and ecology of Armillaria matsutake. Botany Magazine. 63: 40-41
  17. Imberger K.T. and Chiu, C.Y. 2001. Spatial changes of soil fungal and bacterial biomass from a sub-alpine coniferous forest to grassland in a humid, sub-tropical region. Biology &. Fertility of Soils 33: 105-110 https://doi.org/10.1007/s003740000296
  18. Kawagoe, M, Kawakami, K., Nakamura, Y., Naoe, K., Miki, K. and Noda, H. 1999. Submerged culture of Tricholoma matsutake mycelium in bubble column fermentors. Journal of Bioscience and Bioengineering 87(1): 116-118 https://doi.org/10.1016/S1389-1723(99)80020-6
  19. Koo, C.D. and Bilek, E.M. 1998. Financial analysis of vegetation control for sustainable production of Songyi (Tricholoma matsutake) in Korea. Journal of Korea Forest Society. 87: 519-527
  20. Lee, C.Y., Hong, O.P., Jung, M.J. and Han, Y.H. 1997. Effect of carbon sources and vitamins on mycelial growth of Tricholoma matsutake DGUM 26001. The Korean Journal of Mycology. 25(3): 226-232
  21. Mottonen, M., Jarvinen, E., Hokkanen, T.J., Kuuluvainen, T. and Ohtonen, R. 1998. Spatial distribution of soil ergosterol in organic layer of a mature Scots pine (Pinus sylvestris L.) forest. Soil Biology and Biochemistry 31: 503-516 https://doi.org/10.1016/S0038-0717(98)00122-9
  22. Ogawa, M. 1975. Microbial ecology of mycorrhizal fungus-Tricholoma matsutake (Ito et imai) Sing. in pine forest II. Mycorrhiza formed by Tricholoma matsutake. Bulletin of the Government Forest Experiment Station Japan. 278: 21-49
  23. Ohta, A. 1990. A new medium for mycelial growth of mycorrhizal fungi. Transactions of the Mycology Society of Japan 31: 323-334
  24. Park, H., Ka, K.H., Ryoo, C.I. and Kim, H.J. 1998. Ectomycorrhizal mushroom occurrence around the fairy ring of Tricholoma matsutake at a pine-mushroom forest. The Korean Journal of Mycology. 26(3): 306-313
  25. Pasanen A.L., Yli-pietila, K., Pasanen, P., Kalliokoski, P. and Tarhanen. J. 1999. Ergosterol content in various fungal species and biocontaminated building materials. Applied and environmental microbiology 65(1): 138-142
  26. Song, H.S. and Min. K.H. 1991. Microfungal flora of Tricholoma matsutake producing and nonproducing sites In the forest of Pinus densiflora. The Korean Journal of Mycology 19: 109-119
  27. Suzuki, K. 2005. Ectomycorrhizal ecophysiology and the puzzle of Tricholoma matsutake. Journal of Japan Forest Society. 87: 90-102 https://doi.org/10.4005/jjfs.87.90
  28. Vaario, L.-M., Guerin-Laguette, A., Matsushita, N., Suzuki, K. and Lapeyrie, F. 2002. Saprobic potential of Tricholoma matsutake: growth over pine bark treated with surfactants. Mycorrhiza 12: 1-5 https://doi.org/10.1007/s00572-001-0144-7
  29. Wang, Y., Hall, I.R. and Evans, L.A. 1997. Ectomycorrhizal fungi with edible fruiting bodies, 1. Tricholoma matsutake and related. Economic Botany 51(3): 311-327 https://doi.org/10.1007/BF02862101
  30. Weete, J.D. and Gandi, S.R. 1996. Biochemistry and molecular biology of fungal sterol. pp. 421-438. In: Esser, K. and Lemke, P. A. Eds. The Mycota. Springer, Berlin
  31. Yamada, A., Kanekawa, S. and Ohmasa, M. 1999. Ectomycorrhiza formation of Tricholoma matsutake on Pinus densiflora. Mycoscience 40: 193-198 https://doi.org/10.1007/BF02464298