BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway

  • Jin, Eun-Jung (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Sun-Young (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Young-Ae (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jung, Jae-Chang (Department of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Bang, Ok-Sun (School of Biological Sciences, Seoul National University) ;
  • Kang, Shin-Sung (Department of Biology, College of Natural Sciences, Kyungpook National University)
  • Received : 2006.09.20
  • Accepted : 2006.11.13
  • Published : 2006.12.31

Abstract

The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., and de Crombrugghe, B. (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16, 2813−2828
  2. Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., et al. (2004) Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18, 1072−1087 https://doi.org/10.1101/gad.1171104
  3. Bang, O. S., Kim, E. J., Chung, J. G., Lee, S. R., Park, T. K., et al. (2000) Association of focal adhesion kinase with fibronectin and paxillin is required for precartilage condensation of chick mesenchymal cells. Biochem. Biophys. Res. Commun. 278, 522−529
  4. Baur, S. T., Mai, J. J., and Dymecki, S. M. (2000) Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127, 605−619
  5. Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B. (1999) Sox9 is required for cartilage formation. Nat. Genet. 22, 85−89
  6. Blaney Davidson, E. N., Vitters, E. L., van der Kraan, P. M., and van den Berg, W. B. (2006) Expression of TGF-beta and the TGF-beta signaling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis role in cartilage degradation, chondrogenesis and osteophyte formation [online]. Ann. Rheum. Dis. 0: ard.2005.045971v1
  7. Boulet, A. M. and Capecchi, M. R. (2004) Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 131, 299−309 https://doi.org/10.1242/dev.00936
  8. Chen, C. C., Rosenbloom, C. L., Anderson, D. C., and Manning, A. M. (1995) Selective inhibition of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression by inhibitors of I kappa B-alpha phosphorylation. J. Immunol. 155, 3538−35345
  9. Chuong, C. M., Widelitz, R. B., Jiang, T. X., Abbott, U. K., Lee, Y. S., et al. (1993) Roles of adhesion molecules NCAM and tenascin in limb skeletogenesis: analysis with antibody perturbation, exogenous gene expression, talpid mutants and activin stimulation. Prog. Clin. Biol. Res. 383, 465−474
  10. Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze'ev, A. (2002) The cadherin-catenin adhesion system in signaling and cancer. J. Clin. Invest. 109, 987−991
  11. DeLise, A. M., Fischer, L., and Tuan, R. S. (2000) Cellular interactions and signaling in cartilage development. Osteoarthritis Cartilage 8, 309−334
  12. DeLise, A. M. and Tuan, R. S. (2002a). Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro. Dev. Dyn. 225, 195−204 https://doi.org/10.1002/dvdy.10151
  13. DeLise, A. M. and Tuan R. S. (2002b). Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro. J. Cell Biochem. 87, 342−359 https://doi.org/10.1002/jcb.10308
  14. Denker, A. E., Haas, A. R., Nicoll, S. B., and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures. Differentiation 64, 67−76 https://doi.org/10.1046/j.1432-0436.1999.6420067.x
  15. Fischer, L., Boland, G., and Tuan, R. S. (2002) Wnt-3A enhances bone morphogenetic protein-2-mediated chondrogenesis of murine C3H10T1/2 mesenchymal cells. J. Cell Biochem. 277, 30870−30878
  16. Fisher, M. C., Li, Y., Seghatoleslami, M. R., Dealy, C. N., and Kosher, R. A. (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol. 25, 27−39 https://doi.org/10.1016/j.matbio.2005.07.008
  17. Goessler, U. R., Bugert, P., Bieback, K., Deml, M., Sadick, H., et al. (2005) In-vitro analysis of the expression of TGFbetasuperfamily- members during chondrogenic differentiation of mesenchymal stem cells and chondrocytes during dedifferentiation in cell culture. Cell. Mol. Biol. Lett. 10, 345−362
  18. Gomes, R. R. Jr., Joshi, S. S., Farach-Carson, M. C., and Carson, D. D. (2006) Ribozyme-mediated perlecan knockdown impairs chondrogenic differentiation of C3H10T1/2 fibroblasts. Differentiation 74, 53−63 https://doi.org/10.1111/j.1432-0436.2005.00055.x
  19. Grotewold, L. and Ruther, U. (2002) Bmp, Fgf and Wnt signaling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-1. Int. J. Dev. Biol. 46, 943−947
  20. Haas, A. R. and Tuan, R. S. (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function. Differentiation 64, 77−89 https://doi.org/10.1046/j.1432-0436.1999.6420077.x
  21. Hall, B. K. and Miyake, T. (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol. 39, 881−893
  22. Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., et al. (2003) A computational model on the modulation of mitogen- activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signaling. Biochem. J. 15, 451−463
  23. Hill, T. P., Spater, D., Taketo, M. M., Birchmeier, W., and Hartmann, C. (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727−738 https://doi.org/10.1016/j.devcel.2005.02.013
  24. Ide, H., Wada, N., and Uchiyama, K. (1994) Sorting out of cells from different parts and stages of the chick limb bud. Dev. Biol. 162, 71−76
  25. Izzo, M. W., Pucci, B., Tuan, R. S., and Hall, D. J. (2002) Gene expression profiling following BMP-2 induction of mesenchymal chondrogenesis in vitro. Osteoarthritis Cartilage 10, 23−33 https://doi.org/10.1053/joca.2001.0478
  26. Jadlowiec, J. A., Zhang, X., Li, J., Campbell, P. G., and Sfeir, C. (2006) Extracellular matrix-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein. J. Biol. Chem. 281, 5341−5347 https://doi.org/10.1074/jbc.M506158200
  27. Jin, E.-J., Park, J. H., Lee, S. Y., Chun, J. S., Bang, O. S., et al. (2006) Wnt-5a is involved in TGF-beta3-stimulated chondrogenic differentiation of chick wing bud mesenchymal cells. Int. J. Biochem. Cell Biol. 38, 183−195 https://doi.org/10.1016/j.biocel.2005.08.013
  28. Ju, H., Venema, V. J., Liang, H., Harris, M. B., Zou, R., et al. (2000) Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signaling proteins in plasmalemmal caveolae. Biochem. J. 351(Pt 1), 257−264 https://doi.org/10.1042/0264-6021:3510257
  29. Knudson, C. B. and Knudson, W. (2001) Cartilage proteoglycans. Semin. Cell Dev. Biol. 12, 69−78
  30. Lefebvre, V., Huang, W., Harley, V. R., Goodfellow, P. N., and de Crombrugghe, B. (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol. Cell. Biol. 17, 2336–2346
  31. Longobardi, L., Torello, M., Buckway, C., O'Rear, L., Horton, W. A., et al. (2003) A novel insulin-like growth factor (IGF)- independent role for IGF binding protein-3 in mesenchymal chondroprogenitor cell apoptosis. Endocrinology 144, 1695−1702 https://doi.org/10.1210/en.2002-220959
  32. Lyu, L. and Joo, C. K. (2005) Wnt-7a up-regulates matrix metalloproteinase- 12 expression and promotes cell proliferation in corneal epithelial cells during wound healing. J. Biol. Chem. 280, 21653−21660 https://doi.org/10.1074/jbc.M500374200
  33. Maleski, M. P. and Knudson, C. B. (1996) Hyaluronan-mediated aggregation of limb bud mesenchyme and mesenchymal condensation during chondrogenesis. Exp. Cell Res. 225, 55-66 https://doi.org/10.1006/excr.1996.0156
  34. Nakamura, K., Shirai, T., Morishita, S., Uchida, S., Saeki-Miura, K., et al. (1999) p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Exp. Cell Res. 250, 351−363 https://doi.org/10.1006/excr.1999.4535
  35. Ng, L. J., Wheatley, S., Muscat, G. E., Conway-Campbell, J., Bowles, J., et al. (1997) SOX9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 183, 108–121 https://doi.org/10.1006/dbio.1996.8487
  36. Oberlender, S. A. and Tuan, R. S. (1994a) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120, 177−187
  37. Oberlender, S. A. and Tuan, R. S. (1994b) Spatiotemporal profile of N-cadherin expression in the developing limb mesenchyme. Cell Adhes. Commun. 2, 521−537 https://doi.org/10.3109/15419069409014216
  38. Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., et al. (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613−5619 https://doi.org/10.1074/jbc.275.8.5613
  39. Park, Y., Sugimoto, M., Watrin, A., Chiquet, M., and Hunziker, E. B. (2005) BMP-2 induces the expression of chondrocytespecific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel. Osteoarthritis Cartilage 13, 527−536 https://doi.org/10.1016/j.joca.2005.02.006
  40. Phornphutkul, C., Wu, K. Y., Yang, X., Chen, Q., and Gruppuso, P. A. (2004) Insulin-like growth factor-I signaling is modified during chondrocyte differentiation. J. Endocrinol. 183, 477−486 https://doi.org/10.1677/joe.1.05873
  41. Sandell, L. J. and Adler, P. (1999) Developmental patterns of cartilage. Front. Biosci. 15, 731−742
  42. Seghatoleslami, M. R., Martinez, A., Cuttitta, F., and Kosher, R. A. (2003) Distribution and possible function of an adrenomedullin- like peptide in the developing chick limb bud. Int. J. Dev. Biol. 469, 957−961
  43. Seto, H., Kamekura, S., Miura, T., Yamamoto, A., Chikuda, H., et al. (2004) Distinct roles of Smad pathways and p38 pathways in cartilage-specific gene expression in synovial fibroblasts. J. Clin. Invest. 113, 718−726.
  44. Shea, C. M., Edgar, C. M., Einhorn, T. A., and Gerstenfeld, L. C. (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J. Cell. Biochem. 90, 1112−1127 https://doi.org/10.1002/jcb.10734
  45. Solchaga, L. A., Penick, K., Porter, J. D., Goldberg, V. M., and Caplan, A. I. (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 203, 398−409 https://doi.org/10.1002/jcp.20238
  46. Stott, N. S., Jiang, T. X., and Chuong, C. M. (1999) Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2. J. Cell. Physiol. 180, 314−324 https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<314::AID-JCP2>3.0.CO;2-Y
  47. Tavella, S., Raffo, P., Tacchetti, C., Cancedda, R., and Castagnola, P. (1994) N-CAM and N-cadherin expression during in vitro chondrogenesis. Exp. Cell Res. 215, 354−362
  48. Tsumaki, N., Nakase, T., Miyaji, T., Kakiuchi, M., Kimura, T., et al. (2002) Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis. J. Bone Miner. Res. 17, 898−906
  49. Tufan, A. C. and Tuan, R. S. (2001) Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered Ncadherin- related functions. FASEB J. 15, 1436−1438
  50. Uusitalo, H., Hiltunen, A., Ahonen, M., Gao, T. J., Lefebvre, V., et al. (2001) Accelerated up-regulation of L-Sox5, Sox6, and Sox9 by BMP-2 gene transfer during murine fracture healing. J. Bone Miner. Res. 16, 1837−1845 https://doi.org/10.1359/jbmr.2001.16.10.1837
  51. Yi, S. E., Daluiski, A., Pederson, R., Rosen, V., and Lyons, K. M. (2000) The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621−630
  52. Yoon, Y. M., Oh, C. D., Kang, S. S., and Chun, J. S. (2000) Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. J. Bone Miner. Res. 15, 2197−2205 https://doi.org/10.1359/jbmr.2000.15.11.2197
  53. Yoon, B. S. and Lyons, K. M. (2004) Multiple functions of BMPs in chondrogenesis. J. Cell. Biochem. 93, 93−103 https://doi.org/10.1002/jcb.20211
  54. Yoon, B. S., Ovchinnikov, D. A., Yoshii, I., Mishina, Y., Behringer, R. R., et al. (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. USA 102, 5062−5067
  55. Zehentner, B. K., Dony, C., and Burtscher, H. (1999) The transcription factor Sox9 is involved in BMP-2 signaling. J. Bone Miner. Res. 14, 1734−1741 https://doi.org/10.1359/jbmr.1999.14.10.1734
  56. Zhang, W. V. and Stott, N. S. (2004) BMP-2-modulated chondrogenic differentiation in vitro involves down-regulation of membrane- bound beta-catenin. Cell Commun. Adhes. 1, 89−102
  57. Zhang, C., Basta, T., Jensen, E. D., and Klymkowsky, M. W. (2003) The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130, 5609−5624 https://doi.org/10.1242/dev.00798
  58. Zhao, Q., Eberspaecher, H., Lefebvre, V., and De Crombrugghe, B. (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209, 377−386
  59. Zhou, G., Lefebvre, V., Zhang, Z., Eberspaecher, H., and de Crombrugghe, B. (1998) Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J. Biol. Chem. 273, 14989−14997 https://doi.org/10.1074/jbc.273.24.14989