Characterization of Alternative Anode Catalysts for Direct Formic Acid Fuel Cell

직접 개미산 연료전지용 연료극 촉매의 특성 연구

  • Yu, Jae Keun (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Hyo Song (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Ki Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Young Chun (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Han, Jong Hee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Oh, In Hwan (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University)
  • 유재근 (충남대학교 화학공학과) ;
  • 이효송 (충남대학교 화학공학과) ;
  • 김기호 (충남대학교 화학공학과) ;
  • 김영천 (한국과학기술원 연료전지연구센터) ;
  • 한종희 (한국과학기술원 연료전지연구센터) ;
  • 오인환 (한국과학기술원 연료전지연구센터) ;
  • 이영우 (충남대학교 화학공학과)
  • Received : 2006.02.22
  • Accepted : 2006.06.07
  • Published : 2006.06.30

Abstract

Direct formic acid fuel cells (DFAFCs) are potential alternative power sources for portable devices such as cellular phone, personal digital assistants (PDA) and laptop computers. In this study, we developed the catalysts for great performance of fuel cell, and investigated their characteristics by using EDS and SEM. Pt-Pd catalysts showed uniform size and homogeneous distribution. As the content of palladium increased, the performance of DFAFC increased. Pd black showed the greatest performance among the five catalysts tested. Also, Pt-Pd (1:1) catalyst had an excellent maximum power density of $120mW/cm^2$. As the operating temperature increased, fuel cell performance was increased due to a reaction activity increases of catalyst. But, temperature had only a slight effect on the performance of fuel cell in the best activity range of membrane.

본 연구에서는 고분자 전해질 연료전지(PEMFC)의 연료로 새롭게 제안된 개미산을 이용한 직접 개미산 연료전지 시스템에서 우수한 성능을 구현하기 위해서 촉매를 개발하고, EDS와 SEM을 사용하여 촉매의 특성을 분석하였다. 또한, 단일전지 실험을 통하여 기존 상용 촉매와 성능을 비교하였다. 본 연구에서 개발된 Pt-Pd 촉매는 SEM 분석 결과 입자의 크기가 균일하고 조밀한 분포를 나타내었다. 촉매의 종류에 따른 연료전지의 성능실험에서 Pd의 함량 비율이 높을수록 전지의 성능이 우수하였으며, 특히 Pd black은 산화가스로 산소를 사용하였을 경우 상온에서 $130mW/cm^2$ 의 최대전력밀도를 나타냈다. 또한, Pt-Pd 촉매도 우수한 성능을 보였으며, 특히 Pt와 Pd의 비율이 1:1일 때 산화가스로 산소를 사용하였을 경우 상온에서 $120mW/cm^2$의 최대전력밀도를 나타냈다. 시스템의 운전온도를 $60^{\circ}C$까지 증가 시켰을 때, 전지의 성능은 촉매의 반응활성 증가로 크게 증가하였으나, 막의 최고 활성 영역인 $50{\sim}60^{\circ}C$ 범위에서는 운전온도가 전지의 성능에 큰 영향을 미치지 않았다.

Keywords

Acknowledgement

Supported by : 에너지관리공단

References

  1. Son, J. E., 'Hydrogen & Fuel Cell Technology,' Korean Chem. Eng. Res., 42(1), 1-9(2004)
  2. Vielstich, W., Gasteiger, H. A. and Lamm, A., Handbook of Fuel Cells, 1, John Wiley & Sons, England(2003)
  3. Cropper, M. J., Geiger, S. and Jollie, D., 'Fuel Cells: A Survey of Current Developments,' J. Power Sources, 131(1-2), 57-61 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.079
  4. Lee, H. S., Bae, B. C., Lee, J. Y., Hong, S. A. and Ha, H. Y., 'Analysis of Long-term Stability of Direct Methanol fuel Cell and Investigation of the Methods to Improve its Performance,' Trans. of The Korean Hydrogen and New Energy Sociaty, 16(1), 31-39(2005)
  5. Rice, C., Masel, R. I., Waszczuk, P., Wieckowski, A. and Barnard, T., 'Direct Formic Acid Fuel Cells,' J. Power Sources, 111(1), 83-89(2002) https://doi.org/10.1016/S0378-7753(02)00271-9
  6. Ha, S., Rice, C. A., Masel, R. I. and Wieckowski, A., 'Methanol Conditioning for Improved Performance of Formic Acid Fuel Cells,' J. Power Sources, 112(2), 655-659(2002) https://doi.org/10.1016/S0378-7753(02)00453-6
  7. Rice, C. Masel, R. I. and Wieckowski, A., 'Catalysts for Direct Formic Acid Fuel Cells,' J. Power Sources, 115(2), 229-235(2003) https://doi.org/10.1016/S0378-7753(03)00026-0
  8. Zhu, Y., Ha, S. Y. and Masel, R. I., 'High Power Density Direct Formic Acid Fuel Cell,' J. Power Sources, 130(1-2), 8-14(2004) https://doi.org/10.1016/j.jpowsour.2003.11.051
  9. Rhee, Y. W., Ha, S. Y. and Masel, R. I., 'Crossover of Formic Acid Through Nafion Membranes,' J. Power Sources, 117(1-2), 35-38(2003) https://doi.org/10.1016/S0378-7753(02)00617-1
  10. Kim, J. S., Yu, J. K., Jung, E. M., Lee, H. S., Kim, J. Y., Kim, Y. C., Han, J. H., Oh, I. H. and Rhee, Y. W., 'The Performance of Direct Formic Acid Fuel Cells with Various Catalysts,' Korean Chem. Eng. Res., 42(5), 630-634(2004)
  11. Kim, J. S., Yu, J. K., Lee, H. S., Kim, J. Y., Kim, Y. C., Han, J. H., Oh, I. H. and Rhee, Y. W., 'Effect of Temperature, Oxidant and Catalyst Loading on the Performance of Direct Formic Acid Fuel Cell,' Korean J. Chem. Eng., 22(5), 661-665(2005) https://doi.org/10.1007/BF02705779
  12. Zhu, Y., Khan, Z. and Masel, R. I., 'The Behavior of Palladium Catalysts in Direct Formic Acid Fuel Cells,' J. Power Sources, 139(1-2), 15-20(2005) https://doi.org/10.1016/j.jpowsour.2004.06.054
  13. Jayashree, R. S., Spendelow, J. S., Yeom, J., Rastogi, J., Shannon, M. A. and Kenis, P. J. A., 'Characterization and Application of Electrodeposited Pt, Pt/Pd, and Pd Catalyst Structures for Direct Formic Acid Micro Fuel Cells,' Electrochimica Acta, 50(24), 4674-4682(2005) https://doi.org/10.1016/j.electacta.2005.02.018
  14. Park, S. J., Jeong, H. J. and Nah, C. W., 'Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution,' Polymer(Korea), 27(1), 46-51(2003)
  15. Chen, S., Lee, D. and Schell, M., 'Increases in Reaction Rates and Improvement of Current-Potential Characteristics in Electrochemical Oxidation of Formic Acid,' J. Electrochem. Commun., 3(2), 81-85(2001) https://doi.org/10.1016/S1388-2481(01)00109-6
  16. Chen, S., Lee, D. and Schell, M., 'Enhancement of the Electrochemical Oxidation of Formic Acid. Effects of Anion Adsorption and Variation of Rotation Rate,' Electrochimica Acta, 46(23), 3481-3492(2001) https://doi.org/10.1016/S0013-4686(01)00635-1
  17. Swamy, B. E. K., Vannoy, C., Maye, J. and Schell, M., 'Increases in Reaction Rates Achieved by Replacing Anions in the Electrolyte with More Inhibiting Ones,' Electrochemistry Communications, 6(10), 1032-1036(2004) https://doi.org/10.1016/j.elecom.2004.07.022
  18. Chen, S. and Schell, M., 'Effects of Anion Adsorption Different from Blocking Surface Sites Deduced from Instabilities in the Oxidation of Formic Acid,' J. Electroanalytical Chemistry, 504(1), 78-88(2001) https://doi.org/10.1016/S0022-0728(01)00415-6