The auditory evoked potential in premature small for gestational age infants

미숙아로 태어난 부당 경량아의 청각유발전위검사

  • Moon, Il Hong (Department of Pediatrics, College of Medicine, Korea University) ;
  • Ha, Kee Soo (Department of Pediatrics, College of Medicine, Korea University) ;
  • Kim, Gui Sang (Department of Rehabiliitation Medicine, College of Medicine, Korea University) ;
  • Choi, Byung Min (Department of Pediatrics, College of Medicine, Korea University) ;
  • Eun, Baik-Lin (Department of Pediatrics, College of Medicine, Korea University) ;
  • Yoo, Kee Hwan (Department of Pediatrics, College of Medicine, Korea University) ;
  • Hong, Young Sook (Department of Pediatrics, College of Medicine, Korea University) ;
  • Lee, Joo Won (Department of Pediatrics, College of Medicine, Korea University)
  • 문일홍 (고려대학교 의과대학 소아과학교실) ;
  • 하기수 (고려대학교 의과대학 소아과학교실) ;
  • 김귀상 (고려대학교 의과대학 재활의학과교실) ;
  • 최병민 (고려대학교 의과대학 소아과학교실) ;
  • 은백린 (고려대학교 의과대학 소아과학교실) ;
  • 유기환 (고려대학교 의과대학 소아과학교실) ;
  • 홍영숙 (고려대학교 의과대학 소아과학교실) ;
  • 이주원 (고려대학교 의과대학 소아과학교실)
  • Received : 2006.07.27
  • Accepted : 2006.09.27
  • Published : 2006.12.15

Abstract

Purpose : This study aimed to evaluate the usefulness of auditory evoked potential (AEP) in clarifying neuronal development in premature small for gestational age (SGA), and appropriate for gestational age (AGA) infants. Methods : A total of 183 premature infants who were born from August 2002 to July 2005, were examined with AEP. They were divided into three groups; AGA, symmetric-SGA and asymmetric-SGA group. Results : Statistically significant differences in the head circumference were observed in three groups. Among the risk factors, prevalence of hypoglycemia and hypoalbuminemia between AGA and asymmetric SGA infants were significantly different. V absolute peak latency (APL) in the right side of AGA infants was delayed were than that of asymmetric SGA infants. III-V interpeak latency (IPL) of asymmetric SGA infants was delayed more than that of symmetric SGA infants. Moreover, I-V IPL on both sides of symmetric SGA infants was shortened more than that of AGA infants. However, all the results of AEP were within the reference range, according to gestational age. Birth weight of, only asymmetric SGA, was related to the III APL on both sides and the III-V IPL on right side. Conclusion : This study shows that the values of APL and IPL of premature SGA infants are different than that of premature AGA infants. These data could be an indicator in evaluating the neurologic functions of small for gestational age infants.

목 적 : 청각 유발 전위 검사는 신생아 선별 검사의 하나로 주요 신경학적 장애의 발생 빈도가 정상아보다 높은 미숙아 군에서 주로 시행되며, 본 연구에서는 이 검사를 미숙아에게 실시하여 미숙아 중에서도 부당 경량아와 적정 체중아군 사이에 유의한 차이가 있는지를 검토하고자 하였다. 방 법 : 2002년 8월부터 2005년 7월까지 고려대학교 의료원에서 태어난 미숙아중 산모와 환아 모두 특이 질병이 없는 경우를 대상으로 하였으며, 청각 유발 전위 검사를 시행한 환아 183명을 대상으로 하였다. 출생 시 체중과 머리 둘레, 가슴둘레를 바탕으로 적정 체중아와 비대칭 부당 경량아, 그리고 대칭적 부당경량아의 세 군으로 나누고, APL(I, III, V파)와 IPL(I-III, III-V, I-V파)의 6가지 항목을 비교하였다. 결 과 : 적정 체중아와 대칭적 부당 경량아군, 대칭적 부당 경량아와 비대칭 부당 경량아 군에서 출생 시 머리 둘레가 유의한 차이를 보였고(P<0.001, P<0.001), 적정 체중아와 비대칭 부당경량아군 사이에 통계학적으로 의미 있는 저혈당증과 저알부민혈증 빈도의 차이를 보였다(P=0.027, P=0.030). 적정 체중아군이 우측의 V APL에서 대칭 부당 경량아군에 비해 지연되었다(P=0.042). 또한 우측의 III-V IPL에서는 비대칭 부당 경량아군이 적정 체중아군이나 대칭적 부당 경량아군에 비해 지연되었다(P=0.047, P=0.005). 좌측의 III-V IPL에서도 비대칭 부당 경량아군이 대칭적 부당 경량아군에 비해 지연되었다(P=0.022). 좌, 우측의 I-V IPL에서는 대칭적 부당경량아군에서 적정 체중아에 비해 단축되었다(P=0.018, P=0.035). 그러나 시행한 모든 AEP 값은 참고 범위 안에 있었다. 그리고 각 군에서 출생 시 체중과 유의한(P<0.05) 요인을 상관 분석한 결과, 비대칭 부당 경량아에서만 출생 시 체중이 좌, 우측의 III APL와 양의 상관관계를, 우측의 III-V IPL와 음의 상관관계를 이루고 있었다(P=0.017, P=0.027, P=0.019). 결 론 : 본 연구에서는 부당 경량 미숙아의 신경 발달에 대한 기초 자료를 마련하였으며, 이는 추적 진료시 신경학적 평가에 유용할 것으로 생각한다.

Keywords

References

  1. Ahn HS, Pediatrics. 8th ed. Seoul: Daehan Printing & Publishing Co. Ltd 2004:302
  2. Groenendaal F, de Vries LS. Selection of babies for intervention after birth asphyxia. Semin Neonatol 2000;5:17-32 https://doi.org/10.1053/siny.1999.0119
  3. Lee EY, Choe PH, Kim SJ. Auditory brainstem evoked responses in hyperbilirubinemic neonates. J Korean Pediatr Soc 1987;30:846-51
  4. Kim HJ, Kang H, Choi BM, Yoo KH, Hong YS, Lee, JW et al. Evoked potentials and cranial ultrasonography as a prognostic method in newborn with asphyxia. J Korean Pediatr Soc 2001;44:1162-7.
  5. Ahn CI, Chung SJ. Auditory brain stem responses and neurological disorders in children. J Korean Pediatr Soc 1994;37:149-56
  6. Scalais E, Fran ois-Adant A, Nuttin C. Multimodality evoked potentials as a prognostic tool in term asphyxiated newborns. Electroencephalogr Clin Neurophysiol 1998;108:199-207 https://doi.org/10.1016/S0168-5597(97)00076-2
  7. Jiang Ze D, Tierney TS. Long-term effect of perinatal and postnatal asphyxia on developing human auditory brainstem responses. Int J Pediatr Otorhinolaryngol 1996;34:111-27 https://doi.org/10.1016/0165-5876(96)81277-8
  8. Gibson NA, Graham M, Levene MI. Somatosensory evoked potential and outcome in perinatal asphyxia. Arch Dis Child 1992;67:393-8 https://doi.org/10.1136/adc.67.4_Spec_No.393
  9. Pike AA, Marlow N. The role of cortical evoked responses in predicting neuromotor outcome in very preterm infants. Early Hum Dev 2000;57:123-35 https://doi.org/10.1016/S0378-3782(99)00061-4
  10. Zafeiriou DI, Andreou A, Karasavidou K. Utility of brainstem auditory evoked potential in children with spastic cerebral palsy. Acta Paediatr 2000;80:194-7
  11. Kesson AM, Henderson-Smart DJ, Pettigrew AG, Edwards DA. Peripheral nerve conduction velocity and brainstem auditory evoked responses in small for gestational age preterm infants. Early Hum Dev 1985;11:213-9 https://doi.org/10.1016/0378-3782(85)90075-1
  12. Kohelet D, Arbel E, Goldberg M, Arlazzoroff A. Intrauterine growth retardation and brainstem auditory-evoked response in preterm infants. Acta Paediatr 2000;89:73-6 https://doi.org/10.1080/080352500750029103
  13. Min JS, Ra YH, Bae CW, Chung SJ, Ahn CI. Developmental changes of auditory brainstem responses in children. J Korean Pediatr Soc 1987;30:1387-400
  14. Park ES, Park CI, Shin JS, Cho BK. Brainstem auditory evoked potentials in infants below 6 months of age. J Korean Acad Rehab Med 1992;16:123-33
  15. Keith HC. Evoked potentials in clinical medicine. 3rd edition. Philadelphia: Lippincott-Raven Publishers, 1997:269-82
  16. Starr A, Hamilton AE. Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brainstem responses. Electroencephalogr Clin Neurophysiol 1976;41:595-608 https://doi.org/10.1016/0013-4694(76)90005-5
  17. Stockard JJ, Rossiter VS. Clinical and pathologic correlates of brain stem auditory response abnormalities. Neurology 1977;27:316-25 https://doi.org/10.1212/WNL.27.4.316
  18. Stockard JJ, Srockard JE, Sharbrouth FW. Brain stem auditory evlked potentials in neurology: methdogy, interpretation, clinical application. In Aminoff NJ, editor, Electrodiagnosis in clinical neurology. New York, Edinburgh, London: Churchill Livingstone 1980:370-413.
  19. Schleussner E, Schneider U. Developmental changes of auditory-evoked fields in fetuses. Exp Neurol 2004;190:S59-64
  20. Mahajan V, Gupta P, Tandon O, Aggarwal A. Brainstem auditory evoked responses in term small for gestational age newborn infants born to undernourished mothers. Eur J Paediatr Neurol 2003;7:67-72 https://doi.org/10.1016/S1090-3798(03)00015-1
  21. Allen MC. Developmental outcome and followup of the small for gestational age infant. Semin Perinatol 1984;8:123-56
  22. Jiang ZD, Brosi DM, Wang J, Wilkinson AR. Brainstem auditory-evoked responses to different rates of clicks in small-for-gestational age preterm infants at term. Acta Paediatr 2004;93:76-81 https://doi.org/10.1080/08035250310007394
  23. Agarwal KN. Iron and the brain: neurotransmitter receptors and magnetic resonance spectroscopy. Br J Nutr 2001;85 suppl 2:147-50 https://doi.org/10.1079/BJN2000307
  24. Koh TH, Aynsley-Green A, Tarbit M, Eyre JA. Neural dysfunction during hypoglycaemia. Arch Dis Child 1988;63: 1353-8. https://doi.org/10.1136/adc.63.11.1353
  25. Kern W, Kerner W, Pietrowsky R, Fehm HL, Born J. Effects of insulin and hypoglycemia on the auditory brain stem response in humans. J Neurophysiol 1994;72:678-83. https://doi.org/10.1152/jn.1994.72.2.678
  26. Ponton CW, Eggermont JJ, Coupland SG, Winkelaar R. The relation between head size and auditory brain-stem response interpeak latency maturation. J Acoust Soc Am 1993;94: 2149-58 https://doi.org/10.1121/1.407486
  27. Strauss RS, Dietz WH. Growth and development of term children born with low birth weight: effects of genetic and environmental factors. J Pediatr 1998;133:67-72 https://doi.org/10.1016/S0022-3476(98)70180-5
  28. Antonelli AR, Bonfioli F, Nicolai P, Peretti G. The relationship of head and brainstem size to main parameters of ABR in the developmental age and in adults. Acta Otolaryngol 1988;105:587-90. https://doi.org/10.3109/00016488809119525
  29. Hecox KE, Cone B. Prognostic importance of brainstem auditory evoked responses after asphyxia. Neurology 1981;31: 1429-34 https://doi.org/10.1212/WNL.31.11.1429