메탄올-글리세린계를 작동유체로 하는 흡수열펌프에서 흡수기 연구

A Study on Absorber in Absorption Heat Pump with Methanol-Glycerine System as a Working Fluid

  • 민병훈 (수원대학교 화공생명공학과)
  • Min, Byong-Hun (Department of Chemical & Biochemical Engineering, University of Suwon)
  • 투고 : 2005.12.01
  • 심사 : 2005.12.22
  • 발행 : 2006.02.10

초록

냉 난방 수요에서 일어나는 환경오염의 최소화와 화석연료 소비를 감소시키기 위해서 에너지보존을 개선시키는 것은 필수적이다. 이러한 점에서 흡수식 열펌프기술은 에너지 절약을 위해서 많은 가능성을 가지고 있다. 흡수식 열펌프는 에너지를 주입하지 않고 폐열의 이용을 높일 수 있는 방법이다. 흡수식 열펌프는 흡수기에서 흡수된 양의 증가가 매우 중요하기 때문에 흡수기 성능이 매우 중요하다. 본 연구에서는 흡수기의 성능을 개선시키기 위해서 메탄올과 글리세린을 작동유체로 하는 두 종류의 흡수기에 관한 연구를 수행하였다. 전자는 흡수기 내에 액상을 접선방향으로 공급하는 것이고 후자는 흡수기 내벽에 나선형 관을 설치하여 액상을 접선방향으로 공급하는 것이다. 실험 결과 후자가 흡수기에서 발생하는 열 및 물질전달이 향상되어 흡수성능이 증가되었음을 알 수 있었다.

The improvement of energy conservation mandates decrease consumption of fossil fuels and minimize negative impacts on the environment, which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Adsorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. The increase of absorbed amount is of great importance for absorption heat pump cycle. In this study, in order to improve the performance of absorber, the absorbers of two different types have been investigated using methanol-glycerine as a working fluid. The former was tangential feed of liquid phase without spiral tube in the absorber and the latter was with spiral tube in the absorber. The latter was found to be more effective in enhancing the mass and heat transfer to increase the absorption performance.

키워드

과제정보

연구 과제 주관 기관 : 환경청정기술연구센터

참고문헌

  1. E. P. Whitlow, Gas Age, 30, October, 19 (1958)
  2. G. Cacciola, G. Restuccia and G. Rizzo, Heat Recovery Systems & CHP, 10, 177 (1990) https://doi.org/10.1016/0890-4332(90)90001-Z
  3. M. Izquierdo and S. Aroca, Int. J. Energy Research, 14, 281 (1990) https://doi.org/10.1002/er.4440140304
  4. A. Jemqvist, K Abrahamsson, and G. Aly, Heat Recovery Systems & CHP, 12, 469 (1992) https://doi.org/10.1016/0890-4332(92)90015-A
  5. F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993) https://doi.org/10.1016/0890-4332(93)90034-S
  6. B. Agnew, A. Alaktiwi, A. Anderson, and I. Potts, Applied Thermal Engineering, 24, 150l (2004) https://doi.org/10.1016/j.applthermaleng.2003.11.013
  7. R. J. Romero, L. Guillen and I. Pilatowski, Applied Thermal Engineering, 24, 867 (2005)
  8. J. P. Roberson, C. Y. Lee, R. G. Squires, and L. F. Albright, ASHRAE Trans., 72, 198 (1966)
  9. K. P. Tyagi, Heat Recovery System & CHP, 12, 283 (1992) https://doi.org/10.1016/0890-4332(92)90056-N
  10. T. Uemura, Refrigeration, 42, 2 (1967)
  11. P. Le Goff and B. Schwarzer, Entropie, 156, 5 (1990)
  12. R. Matsuda, 3rd IEA Heat Pump Conference, Tokyo (1990)
  13. S. Iyoki and T. Uemura Rev. Int. Froid, 13, May, 191 (1990) https://doi.org/10.1016/0140-7007(90)90075-8
  14. S. Gabsi, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1981)
  15. M. B. E. Siddig, F. A. Watson, and F. A. Holland, Chem. Eng. Res. Dev., 61, 283 (1983)
  16. L. L. Vasiliev, D. A. Mishkinis, A. A. Antukh, and A. G. Kulakov, Applied Thermal Engineering, 24, 1893 (2004) https://doi.org/10.1016/j.applthermaleng.2003.12.018
  17. E. Lepinasse, M. Marion, and V. Gotez, Applied Thermal Engineering, 21, 1251 (2001) https://doi.org/10.1016/S1359-4311(00)00113-7
  18. S. T. Munkejord, H. S. Mahelum, and P. Neksa, Int. J. of Refrigeration, 25, 471 (2002) https://doi.org/10.1016/S0140-7007(00)00036-0
  19. M. A. R. Eisa, S. Devotta, and F. A. Holland, Applied Energy, 25 83 (1986) https://doi.org/10.1016/0306-2619(86)90068-1
  20. M. Narodoslawski, G. Otter, and F. Moser, Heat Recovery System & CHP, 8, 221 (1988) https://doi.org/10.1016/0890-4332(88)90058-0
  21. M. Izquierdo and S. Aroca, Int. J. Energy Research, 14, 281 (1990) https://doi.org/10.1002/er.4440140304
  22. A. Jemqvist and G. Aly, Heat Recovery System & CHP, 12, 469 (1992) https://doi.org/10.1016/0890-4332(92)90015-A
  23. F. Ziegler and P. Riesch, Heat Recovery System & CHP, 13, 147 (1993) https://doi.org/10.1016/0890-4332(93)90034-S
  24. J. B. Castro, J. M. Corberian, and J. Gonzalvez, Applied Thermal Engineering, 25, 2450 (2005) https://doi.org/10.1016/j.applthermaleng.2004.12.009
  25. M. Youbi-ldrissi, J. Bonjour, and F. Meunier, Applied Thermal Engineering, 25, 2827 (2005) https://doi.org/10.1016/j.applthermaleng.2005.02.005
  26. M. A. R. Eisa and R. Best, Applied energy, 28, 69, (1987) https://doi.org/10.1016/0306-2619(87)90042-0
  27. G. S. Grover, M. A. R. Eisa, and F. A. Holland, Heat Recovery System & CHP, 8, 33 (1988) https://doi.org/10.1016/0890-4332(88)90039-7
  28. K. R. Patil, M. A. R. Eisa, and M. N. Kim, Applied energy, 34, 99 (1989) https://doi.org/10.1016/0306-2619(89)90023-8
  29. S. H. Won and W. Y. Lee, Heat Recovery System & CHP, 11 41 (1991) https://doi.org/10.1016/0890-4332(91)90186-8
  30. G. Cacciola, G. Restuccia and G. Rizzo, Heat Recovery System & CHP, 10, 177 (1990) https://doi.org/10.1016/0890-4332(90)90001-Z
  31. B. Mohanty, Ph. D. Dissertation, I.N.P.T, Toulouse, France (1985)
  32. P. D. Dan and S. S. Murthy, Int. J. Energy Research, 13, 1 (1989) https://doi.org/10.1002/er.4440130102
  33. N. Bennani and D. Prevost, Heat Recovery System & CHP, 9, 257 (1989) https://doi.org/10.1016/0890-4332(89)90009-4
  34. D. Daiguji, E. Haihara and T. Saito, Int. J. Heat Mass Transfer., 40, 1743 (1997) https://doi.org/10.1016/S0017-9310(96)00290-6
  35. C. Kren, H. M. Hellmann, and F. Ziegler, Proceeding of the International Sorption Heat Pump Conference, Munich, 375 (1999)
  36. F. Ziegler and G. Grossman, Int. J. Refrigerat, 19, 301 (1996)
  37. Z, Zhnegguo, X. Tao, and F. Xiaoming, Applied Thermal Engineering, 24, 2293 (2004) https://doi.org/10.1016/j.applthermaleng.2004.01.012
  38. W. L. Cheng, K. Houda, P. Hu, and T. Kashiwagi, Applied Thermal Engineering, 24, 281 (2004) https://doi.org/10.1016/j.applthermaleng.2003.08.013
  39. D. Arzoz. P. Rodriuuez, and M. Izquierdo, Applied Thermal Engineering, 25, 797 (2005) https://doi.org/10.1016/j.applthermaleng.2004.08.003
  40. G. Grossman, Int. J. Heat Mass Transfer, 26, 357 (1983) https://doi.org/10.1016/0017-9310(83)90040-6
  41. K. Guo, B. Shu, and L. Chen, J. Eng. Thermophys, 15,408 (1996)
  42. E. Hihara and T. Saito, Int. J. Refrigerat, 16, 339 (1993) https://doi.org/10.1016/0140-7007(93)90006-T
  43. W. J. F. Setterwall, Chem. Eng. Sci., 50, 3077 (1995) https://doi.org/10.1016/0009-2509(95)00146-V
  44. O. Levenspiel, Chemical Reaction Engineering, 3ed. W. Anderson, 3, 293, John wiley and Sons, New York (1999)