Angucyclines Sch 47554 and Sch 47555 from Streptomyces sp. SCC-2136: Cloning, Sequencing, and Characterization

  • Basnet, Devi Bahadur (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Oh, Tae-Jin (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Vu, Thi Thu Hang (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Sthapit, Basundhara (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Liou, Kwangkyoung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Lee, Hei Chan (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University) ;
  • Yoo, Jin-Cheol (Department of Pharmacy, Chosun University) ;
  • Sohng, Jae Kyung (Institute of Biomolecule Reconstruction (iBR), Department of Pharmaceutical Engineering, Sun Moon University)
  • Received : 2006.03.17
  • Accepted : 2006.08.07
  • Published : 2006.10.31

Abstract

The entire gene cluster involved in the biosynthesis of angucyclines Sch 47554 and Sch 47555 was cloned, sequenced, and characterized. Analysis of the nucleotide sequence of genomic DNA spanning 77.5-kb revealed a total of 55 open reading frames, and the deduced products exhibited strong sequence similarities to type II polyketide synthases, deoxysugar biosynthetic enzymes, and a variety of accessory enzymes. The involvement of this gene cluster in the pathway of Sch 47554 and Sch 47555 was confirmed by genetic inactivation of the aromatase, including a portion of the ketoreductase, which was disrupted by inserting the thiostrepton gene.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Burson, K. K. and Khosla, C. (2000) Dissecting the chain length specificity in bacterial aromatic Polyketide synthases using chimeric genes. Tetrahedron 56, 9401-9408 https://doi.org/10.1016/S0040-4020(00)00824-3
  2. Chen, H., Thomas, M. G., Hubbard, B. K., Losey, H. C., Walsh, C. T., et al. (2000) Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDP-L-epivancosamine in chloroeremomycin biosynthesis. Proc. Natl. Acad. Sci. USA 97, 11942-11947
  3. Chu, M., Yarborough, R., Schwartz, J., Patel, M. G., Horan, A. C., et al. (1993) Sch 47554 and Sch 47555, two novel antifungal antibiotics produced from a Streptomyces sp. J. Antibiot. 46, 861-865 https://doi.org/10.7164/antibiotics.46.861
  4. Decker, H. and Haag, S. (1995) Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J. Bacteriol. 177, 6126-6136 https://doi.org/10.1128/jb.177.21.6126-6136.1995
  5. Draeger, G., Park, S. H., and Floss, H. G. (1999) Mechanism of the 2-deoxygenation step in the biosynthesis of the deoxyhexose moieties of the antibiotics granaticin and oleandomycin. J. Am. Chem. Soc. 121, 2611-2612 https://doi.org/10.1021/ja9837250
  6. Faust, B., Hoffmeister, D., Weitnauer, G., Westrich, L., Haag, S., et al. (2000) Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tu2717. Microbiology 146, 147-154
  7. Fernandez-Moreno, M. A., Martinez, E., Boto, L., Hopwood, D. A., and Malpartida, F. (1992) Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J. Biol. Chem. 267, 19278-19290
  8. Han, L., Yang, K., Ramalingam, E., Mosher, R. H., and Vining, L. C. (1994) Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140, 3379-3389 https://doi.org/10.1099/13500872-140-12-3379
  9. Han, L., Yang, K., Kulowski, K., Wendt-Pienkowski, E., Hutchinson, C. R., et al. (2000) An acyl-coenzyme A carboxylase encoding gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 146, 903-910 https://doi.org/10.1099/00221287-146-4-903
  10. Hopwood, D. A. (1997) Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465-2498 https://doi.org/10.1021/cr960034i
  11. Hutchinson, C. R. and Fujii, I. (1995) Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49, 201-238 https://doi.org/10.1146/annurev.mi.49.100195.001221
  12. Ichinose, K., Ozawa, M., Itou, K., Kunieda, K., and Ebizuka, Y. (2003) Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of Streptomyces sp. AM-7161: towards comparative analysis of the benzoisochromanequinone gene clusters. Microbiology 149, 1633- 1645 https://doi.org/10.1099/mic.0.26310-0
  13. Katz, L. and Donadio, S. (1993) Polyketide synthesis: prospects for hybrid antibiotics. Annu. Rev. Microbiol. 47, 875-912 https://doi.org/10.1146/annurev.mi.47.100193.004303
  14. Kharel, M. K., Basnet, D. B., Lee, H. C., Liou, K. K., Moon, Y. H., et al. (2004) Molecular cloning and characterization of a 2-deoxystreptamine biosynthetic gene cluster in gentamicinproducing Micromonospora echinospora ATCC15835. Mol. Cells 18, 71-78
  15. Kieser, T., Mervyn, J. B., Mark, B. J., Keith, C. F., and Hopwood, D. A. (2000) Practical Streptomyces Genetics, John Innes Foundation Norwich, UK
  16. Kulowski, K., Wendt-Pienkowski, E., Han, L., Yang, K., Vining, L. C., et al. (1999) Functional Characterization of the jadI Gene As a Cyclase Forming Angucyclinones. J. Am. Chem. Soc. 121, 1786-1794 https://doi.org/10.1021/ja982707f
  17. Kunzel, E., Faust, B., Oelkers, C., Weissbach, U., Bearden, D. W., et al. (1999) Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransferase of activated D-olivose, leads to formation of the novel urdamycins I, J, and K. J. Am. Chem. Soc. 121, 11058-11062 https://doi.org/10.1021/ja9915347
  18. Lombo, F., Brana, A. F., Salas, J. A., and Mendez, C. (2004) Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chembiochem 5, 1181-1187 https://doi.org/10.1002/cbic.200400073
  19. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A., and Khosla, C. (1993) Engineered biosynthesis of novel polyketides. Science 262, 1546-1550 https://doi.org/10.1126/science.8248802
  20. Motamedi, H., Shafiee, A., Cai, S. J., Streicher, S. L., Arison, B. H., et al. (1996) Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520. J. Bacteriol. 178, 5243- 5248 https://doi.org/10.1128/jb.178.17.5243-5248.1996
  21. Park, C.-H., Lee, D.-W., Kang, T.-B., Lee, K.-H., Yoon, T.-J., et al. (2001) cDNA cloning and sequence analysis of the lectin genes of the Korean Mistletoe (Viscum album coloratum). Mol. Cells 12, 215-220
  22. Perez, M., Lombo, F., Zhu, L., Gibson, M., Brana, A. F., et al. (2005) Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Chem. Commun. (Camb), 1604-1606
  23. Rawlings, B. J. (1999) Biosynthesis of polyketides (other than actinomycete macrolides). Nat. Prod. Rep. 16, 425-484 https://doi.org/10.1039/a900566h
  24. Rebets, Y., Ostash, B., Luzhetskyy, A., Hoffmeister, D., Brana, A., et al. (2003) Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol. Lett. 222, 149-153 https://doi.org/10.1016/S0378-1097(03)00258-1
  25. Rebets, Y., Ostash, B., Luzhetskyy, A., Kushnir, S., Fukuhara, M., et al. (2005) DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology 151, 281-290 https://doi.org/10.1099/mic.0.27244-0
  26. Rodriguez, D., Quiros, L. M., Brana, A. F., and Salas, J. A. (2003) Purification and characterization of a monooxygenase involved in the biosynthetic pathway of the antitumor drug mithramycin. J. Bacteriol. 185, 3962-3965 https://doi.org/10.1128/JB.185.13.3962-3965.2003
  27. Rohr, J. (2000) Bioorganic Chemistry, Deoxysugars, polyketides and related classes: Synthesis, Biosynthesis, Enzymes, Springer. Germany
  28. Rohr, J. and Thiericke, R. (1992) Angucycline group antibiotics. Nat. Prod. Rep. 9, 103-137 https://doi.org/10.1039/np9920900103
  29. Salas, J. A. and Mendez, C. (2005) Biosynthesis pathways for deoxysugars in antibiotic-producing actinomycetes: isolation, characterization and generation of novel glycosylated derivatives. J. Mol. Microbiol. Biotechnol. 9, 77-85 https://doi.org/10.1159/000088838
  30. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning, A Laboratory Manual, third ed. edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  31. Samols, D., Thornton, C. G., Murtif, V. L., Kumar, G. K., Haase, F. C., et al. (1988) Evolutionary conservation among biotin enzymes. J. Biol. Chem. 263, 6461-6464
  32. Sohng, J. K., Oh, T. J., and Kim, C. H. (1998) Method for cloning biosynthetic genes for secondary metabolites including deoxysugars from actinomycetes. J. Biochem. Mol. Biol. 31, 484-491
  33. Spines, C. E., Chang, C. J., and Floss, H. G. (1979) Biosynthesis of the antibiotic granaticin. J. Am. Chem. Soc. 101, 701-706 https://doi.org/10.1021/ja00497a036
  34. Subba, B., Kharel, M. K., Lee, H. C., Liou, K. K., Kim, B.-G., et al. (2005) The ribostamycin biosynthetic gene cluster in Streptomyces ribosidificus: comparison with butirosin biosynthesis. Mol. Cells 20, 90-96
  35. Trefzer, A., Pelzer, S., Schimana, J., Stockert, S., Bihlmaier, C., et al. (2002) Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob. Agents Chemother. 46, 1174-1182 https://doi.org/10.1128/AAC.46.5.1174-1182.2002
  36. Walsh, C. T., Gehring, A. M., Weinreb, P. H., Quadri, L. E., and Flugel, R. S. (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr. Opin. Chem. Biol. 1, 309-315 https://doi.org/10.1016/S1367-5931(97)80067-1
  37. Westrich, L., Domann, S., Faust, B., Bedford, D., Hopwood, D. A., et al. (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol. Lett. 170, 381- 387 https://doi.org/10.1111/j.1574-6968.1999.tb13398.x
  38. Wohlert, S. E., Wendt-Pienkowski, E., Bao, W., and Hutchinson, C. R. (2001) Production of aromatic minimal polyketides by the daunorubicin polyketide synthase genes reveals the incompatibility of the heterologous DpsY and JadI cyclases. J. Nat. Prod. 64, 1077-1080 https://doi.org/10.1021/np010067f
  39. Yang, K., Han, L., Ayer, S. W., and Vining, L. C. (1996) Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae. Microbiology 142, 123-132 https://doi.org/10.1099/13500872-142-1-123