Changes in Soil Chemical Properties after Thinning in Quercus acuta stand

간벌 후 붉가시나무 임분의 토양 특성 변화

  • Hwang, Jaehong (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Lee, Sang-Tae (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Park, Nam-Chang (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Choi, Jae-Chae (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Shin, Hyun-Cheol (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Lee, Kyung-Jae (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Lee, Kwang-Soo (Forest Practice Research Center, Korea Forest Research Institute)
  • 황재홍 (국립산림과학원 남부산림연구소) ;
  • 이상태 (국립산림과학원 남부산림연구소) ;
  • 박남창 (국립산림과학원 남부산림연구소) ;
  • 최재채 (국립산림과학원 남부산림연구소) ;
  • 신현철 (국립산림과학원 남부산림연구소) ;
  • 이경재 (국립산림과학원 남부산림연구소) ;
  • 이광수 (국립산림과학원 산림생산기술연구소)
  • Received : 2006.07.18
  • Accepted : 2006.11.28
  • Published : 2006.12.30

Abstract

This study was carried out to investigate the changes in soil chemical properties after thinning for a Quercus acuta stand in Wan-do Arboretum, Jeollanam-do. The stem density after thinning was determined referring to that of Quercus acutissima with 10 cm diameter at breast height and soil samples were collected 7 years after thinning. There was no considerable difference in soil pH values after thinning. However, the concentrations of soil organic matter, total nitrogen and available phosphorus significantly increased after thinning. In addition, thinning significantly increased cation exchange capacity (C.E.C) and the concentrations of exchangeable cations ($K^+$, $Na^+$, $Ca^{2+}$, and $Mg^{2+}$). From this study, it was revealed that the nutrient concentrations of this study site were generally lower than those of other forest soils. Therefore, it is need to improve the warm temperate forests through thinning and to develop forest treatment for regeneration.

본 연구는 전남 완도수목원 내 붉가시나무 임분을 대상으로 간벌이 토양의 화학적 특성 변화에 미치는 영향을 조사하기 위하여 실시하였다. 간벌은 흉고 직경급 10 cm일 때의 상수리나무 잔존 본수를 기준으로 실시하였으며, 토양 시료는 간벌 후 7년이 경과한 이후 채취하였다. 간벌 후 토양 pH는 대조구와의 차이가 나타나지 않았으나, 토양 유기물, 전질소 및 유효인산 농도는 간벌 처리구가 대조구에 비해 높았다. 간벌 후 토양 내 양이온치환 용량(C.E.C)과 치환성 양이온($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$) 농도 역시 증가하였다. 붉가시나무 임분 내 토양의 양분 농도를 조사한 결과 일반 산림 토양에 비해 낮은 것으로 조사되어, 적절한 간벌 등을 통한 난대림 임분 개선과 갱신을 위한 시업방안 개발이 보다 체계적으로 마련되어야 한다고 판단된다.

Keywords

References

  1. 강진택, 박남창, 정영관. 2002. 토양의 이화학적 성질이 난대지역의 구실잣밤나무와 황칠나무 생장에 미치는 영향. 한국임학회지 91(6): 679-686
  2. 기상청. 2006. 기후정보..http://www.kma.go.kr/kor/weather/climatc/climate_03_01.jsp (2006. 5. 3)
  3. 김상오, 진상철, 오찬진. 2002. 완도난대림수목원 지역붉가시나무림의 삼림군락구조. 한국임학회지 91(6): 781-792
  4. 농업기술연구소. 1988. 토양화학분석법(토양, 식물체, 토양미생물). 농촌진흥청. 농업기술연구소. pp.450
  5. 박 현, 유정환, 이충화, 변재경, 김영걸. 1998. 석회처리와 시비가 산림토양의 화학적 특성, 세균 및 효소 활성에 미치는 영향. 산림과학논문집 58: 178-183
  6. 유정환, 변재경, 김춘식, 이충화, 김영걸, 이원규. 1998. 산성화된 산림토양에 석회, 황산고토 및 복합비료 시비가 토양의 화학적 성질에 미치는 영향. 한국임학회지 87(3): 341-346
  7. 이상태, 손영모, 이경재, 황재홍, 최재채, 신현철, 박남창. 2005. 붉가시나무 간벌강도에 따른 지상부 탄소고정량에 관한 연구. 한국농림기상학회지 7(4): 282-288
  8. 정진현, 구교상, 이충화, 김춘식. 2002. 우리나라 산림토양의 지역별 이화학적 특성. 한국임학회지 91(6): 694-700
  9. Beke, G,J., Graham, D.P. and Entz, T. 1995. Nitrate-N, ammonium-N, and organic matter in relation to profile characteristics of Dark Brown Chernozemic soils. Canadian Journal of Soil Science 75: 55-61 https://doi.org/10.4141/cjss95-008
  10. Binkley, D. 1994. The influence of tree species on forest soils-processes and patterns. In: Trees and Soil Workshop Proceedings, Lincoln University, Christchurch, New Zealand, 28 Feb.-2 Mar. 1994
  11. Boerner, R.E.J. and Sutherland, E.K. 1997. The chemical characteristics of soil in control and experimentally thinned plots in mesic oak forests along a historical deposition gradient. Applied Soil Ecology 7: 59-71 https://doi.org/10.1016/S0929-1393(97)00023-1
  12. Chen, X. and Li, B.-L. 2003. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management 186: 97-206
  13. Edwards, N.T. and Ross-Todd, B.M. 1983. Soil carbon dynamics in a mixed deciduous forest following clear-cutting with and without residue removal. Soil Science Society of America Journal 47: 1014-1021 https://doi.org/10.2136/sssaj1983.03615995004700050035x
  14. Emmett, B.A. 1999. The impact of nitrogen on forest soils and feedbacks on tree growth. Water, Air and Soil Pollution 116:65-74 https://doi.org/10.1023/A:1005209622313
  15. Frank, J. and Stuanes, A.O. 2003. Short-term effects of liming and vitality fertilization on forest soil and nutrient leaching in a Scots pine ecosystem in Norway. Forest Ecology and Management 176: 371-386 https://doi.org/10.1016/S0378-1127(02)00285-2
  16. Garten, Jr. C.T., Huston, M.A. and Thoms, C.A. 1994. Topographic variation of soil nitrogen dynamics at Walker branch watershed, Tennessee. Forest Science 40(3): 497-512
  17. Giardina, C.P. and Rhoades, C.C. 2001. Clear cutting and burning affect nitrogen supply, phosphorus fractions and seedling growth in soils from a Wyoming lodgepole pine forest. Forest Ecology and Management 140: 19-28 https://doi.org/10.1016/S0378-1127(00)00272-3
  18. Giardina, C.P., Ryan, M.G., Hubbard, R.M. and Binkley, D. 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal 65: 1272-1279 https://doi.org/10.2136/sssaj2001.6541272x
  19. Hwang, J. and Son, Y. 2006. Short-term effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea. Ecological Research 21: 671-680 https://doi.org/10.1007/s11284-006-0170-1
  20. Johnson, D.W. 1992. Effects of forest management on soil carbon storage. Water, Air and Soil Pollution 64: 83-120 https://doi.org/10.1007/BF00477097
  21. Johnson, D.W., Ball, J.T. and Walker, R.F. 1997. Effects of $CO_2$ and nitrogen fertilization on vegetation and soil nutrient content in juvenile ponderosa pine. Plant and Soil 190: 29-40 https://doi.org/10.1023/A:1004213826833
  22. Lohm, U., Larsson, K. and Nommik, H. 1984. Acidification and liming of coniferous forest soil: long-term effects on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biology and Biochemistry 16(4): 343-346 https://doi.org/10.1016/0038-0717(84)90029-4
  23. Martinez, A.V. and Perry, D.A. 1997. Factors influencing the availability of nitrogen in thinned and unthinned Dou-glas-fir stands in the central Oregon Cascades. Forest Ecology and Management 93: 195-203 https://doi.org/10.1016/S0378-1127(96)03953-9
  24. Mattson, K.G. and Smith, H.C. 1993. Detrital organic matter and soil $CO_2$ efflux in forests regenerating from cutting in West Virginia. Soil Biology and Biochemistry 25(9): 1241-1248 https://doi.org/10.1016/0038-0717(93)90220-6
  25. Nakane, K., Tsubota, H. and Yamamoto, M. 1986. Cycling of soil carbon in a Japanese red pine forest II. Changes occurring in the first year after a clear-felling. Ecological Research 1: 47-58 https://doi.org/10.1007/BF02361204
  26. Olsson, B.A. 1999. Effects of biomass removal in thinnings and compensatory fertilization on exchangeable base cation pools in acid forest soils. Forest Ecology and Management 122: 29-39 https://doi.org/10.1016/S0378-1127(99)00030-4
  27. Olsson, B.A., Staaf, H., Lundkvist, H., Bengtsson, J. and Rosn, K. 1996. Carbon and nitrogen in coniferous forest soils after clear-felling and harvests of different intensity. Forest Ecology and Management 82: 19-32 https://doi.org/10.1016/0378-1127(95)03697-0
  28. Parker, J.L., Fernandez, I.J., Rustad, L.E. and Norton, S.A. 2001. Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Science Society of America Journal 65: 1248-1255 https://doi.org/10.2136/sssaj2001.6541248x
  29. Prescott, C.E. 1997. Effects of clearcutting and alternative silvicultural systems on rates of decomposition and nitrogen mineralization in a coastal montane coniferous forest. Forest Ecology and Management 95: 253-260 https://doi.org/10.1016/S0378-1127(97)00027-3
  30. Priha, O. and Smolander, A. 1995. Nitrification, denitrification and microbial biomass N in soil from two N-fertilized and limed Norway spruce forests. Soil Biology and Biochemistry 27(3): 305-310 https://doi.org/10.1016/0038-0717(94)00181-Y
  31. Saikh, H., Varadachari, C. and Ghosh, K. 1998. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: A case study in Simlipal National Park, India. Plant and Soil 198: 137-145 https://doi.org/10.1023/A:1004391615003
  32. Sanborn, P. 2001. Influence of broadleaf trees on soil chemical properties: A retrospective study in the sub-boreal spruce zone, British Columbia, Canada. Plant and Soil 236: 75-82 https://doi.org/10.1023/A:1011973402414
  33. SAS. 1988. SAS/STAT User's Guide, 6.03 Ed.; SAS Institute, Cray, North Carolina, 1028 pp
  34. Son, Y., Lee, W.-K., Lee, S.E. and Ryu, S.R. 1999. Effects of thinning on soil nitrogen mineralization in a Japanese larch plantation. Communications in Soil Science and Plant Analysis 30(17&18): 2539-2550 https://doi.org/10.1080/00103629909370393
  35. Starr, J.L., Parkin, T.B. and Meisinger, J.J. 1995. Influence of sample size on chemical and physical soil measurements. Soil Science Society of America Journal 59: 713-719 https://doi.org/10.2136/sssaj1995.03615995005900030012x
  36. Takahashi, M. 1997. Comparison of nutrient concentrations in organic layers between broad-leaved and coniferous forest. Soil Science and Plant Nutrition 43(3): 541-550 https://doi.org/10.1080/00380768.1997.10414781
  37. Vesterdal, L., Dalsgaard, M., Felby, C., Raulund-Rasmussen, K. and Jorgensen, B.B. 1995. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecology and Management 77: 1-10 https://doi.org/10.1016/0378-1127(95)03579-Y